• 제목/요약/키워드: 임플란트-지대주

검색결과 172건 처리시간 0.019초

치과용 임플란트 지대주나사의 조임체결력에 따른 지지골과 지대주나사의 유한요소법 응력 분석 (A finite element stress analysis on the supporting bone and abutment screw by tightening torque of dental implant abutment screw)

  • 이명곤
    • 대한치과기공학회지
    • /
    • 제42권2호
    • /
    • pp.99-105
    • /
    • 2020
  • Purpose: A study analysed the stress distribution of abutment screw and supporting bone of fixture by the tightening torque force of the abutment screw within clinical treatment situation for the stability of the dental implant prosthesis. Methods: The finite element analysis was targeted to the mandibular molar crown model, and the implant was internal type 4.0 mm diameter, 10.0 mm length fixture and abutment screw and supporting bone. The occlusal surface was modeled in 4 cusps and loaded 100 N to the buccal cusps. The connection between the abutment and the fixture was achieved by combining three abutment tightening torque forces of 20, 25, and 30 Ncm. Results: The results showed that the maximum stress value of the supporting bone was found in the buccal cortical bone region of the fixture in all models. The von Mises stress value of each model showed 184.5 MPa at the 20 Ncm model, 195.3 MPa in the 25 Ncm model, and 216.5 MPa in the 30 Ncm model. The contact stress between the abutment and the abutment screw showed the stress value in the 20 Ncm model was 201.2 MPa, and the 245.5 MPa in the 25 Ncm model and 314.0 MPa in the 30 Ncm model. Conclusion: The increase of tightening force within the clinical range of the abutment screw of the implant dental prosthesis was found to have no problem with the stability of the supporting bone and the abutment screw.

골수염 치료로 인해 골결함이 있는 부분무치악 환자에서 IARPD 수복 (Restoration of IARPD in partially edentulous patients with bone defects due to osteomyelitis treatment)

  • 박세현;성한결;고경호;허윤혁;박찬진;조리라
    • 대한치과보철학회지
    • /
    • 제59권3호
    • /
    • pp.359-369
    • /
    • 2021
  • 다수의 치아를 상실한 부분무치악 환자의 치료방법으로는 임플란트 고정성 보철물과 가철성 국소의치가 주로 이용되며, 최근에는 골흡수가 심한 부분무치악 환자에서 의치의 유지와 안정을 위해 임플란트를 추가적으로 이용하는 임플란트 보조 국소의치(implant-assisted removable partial denture, IARPD)를 전략적으로 선택하게 된다. 안면골 감염의 일종인 골수염으로 인한 악안면 구조의 상실은 저작, 연하, 발음과 같은 기능장애 및 사회적, 심리적인 영향을 유발하므로 상실된 조직회복을 위해 가철성 수복이 필요하고 지대치와 국소의치의 설계가 치료의 성공에 더욱 중요한 역할을 담당한다. 이 경우 전통적인 가철성 국소의치에 비해 높은 유지력과 안정성을 가지는 IARPD는 좋은 예후를 보일 수 있다. 본 증례는 골수염 치료로 인해 골결함이 있는 부분무치악 환자에서 IARPD 수복으로 의치의 안정성을 확보하고, 여러 차례에 걸친 임시수복을 통해 적절한 의치 설계와 교합양식을 부여함으로써 최종적으로 발생할 수 있는 문제점을 최소화하고 장기적으로 양호한 예후를 기대할 수 있기에 이를 보고하는 바이다.

임플란트 지대주 삭제시의 발생열에 관한 연구 (A Study on the heat generation during implant abutment preparation)

  • 이호진;송광엽;장태엽
    • 구강회복응용과학지
    • /
    • 제19권1호
    • /
    • pp.27-33
    • /
    • 2003
  • Excessive heat generation at the implant-bone interface may cause irreversible bone damage and loss of osseointegration. The effect of heat generation in vitro at the implant surface caused by abutment reduction with high-speed dental turbine was examined. Titanium-alloy abutments connected to a titanium alloy screw-implant embedded in an acrylic-resin block in a $37^{\circ}C$ water bath were prepared. Temperature changes were recorded via embedded thermocouples at the cervix and apex of the implant surface. Analysis of variance for repeated measures was used to compare seven treatment groups. Fifty seconds of continuous cutting with air and water coolant caused a mean temperature increase of $1.24^{\circ}C$ at apex and $5.77^{\circ}C$ at cervix. Similar intermittent cutting caused increase of $2.50^{\circ}C$ at apex and $1.64^{\circ}C$ at cervix. But, continuous cutting with air coolant caused a mean temperature increase of $6.47^{\circ}C$ at apex and $5.77^{\circ}C$ at cervix. Similar intermittent cutting caused increase of $6.47^{\circ}C$ at apex and $5.77^{\circ}C$ at cervix. Preparation of implant abutment does not lead to detrimental effect on peri-implant tissues provided that adequate cooling. However, without water cooling, extreme overheating could be provoked, reaching the critical temperature that would lead to irreversible bone damage within only a few seconds.

치과용 임플란트 지대주 재료에 따른 지지골 응력의 3차원 유한요소 분석 (Three dimensional finite element analysis of the stress on supporting bone by the abutment materials of dental implant)

  • 이명곤;김갑진
    • 대한치과기공학회지
    • /
    • 제40권1호
    • /
    • pp.41-47
    • /
    • 2018
  • Purpose: The purpose of this study was to analyze the biomechanical properties of the dental implants on the supporting bone using three-dimensional finite element method when three different abutment materials were applied to the implant system. Methods: Three different dental implant models were fabricated by applying Ti, PEEK, and CRE-PEEK (60% carbon-reinforced PEEK) to abutment material. The abutment and connecting screw from the fixture was applied with a tightening torque of 20 Ncm. And then, total loads of 150 N were applied in an $30^{\circ}oblique$ direction (to the vertical). The structural stability of dental implants on the supporting bone was analyzed using Von Mises stress and principal stress values. Results: The maximum tensile stress of the cortical bone was highest at 12.6 MPa in the PEEK abutment (Model-B). Ti abutment (Model-A) and CRE-PEEK abutment (Model-C) showed similar stress distributions (10.6 and 10.3 MPa, respectively). And the maximum compressive principal stress was similar in all models. The Von Mises stress value delivered to the bone around the implant was highest at 16.5 MPa in Model-B. On the other hand, Model-A and C showed similar stress distributions (14.0 and 13.8 MPa, respectively). In addition, the maximum equivalent stress applied to the abutment was highest at 629.8 MPa in Model-A. The stress distribution in Model-C was 573.9 MPa. Whereas, Model-B showed the lowest value at 165.6 MPa. Conclusion : The dental implant supporting bone system using PEEK material seems to have the possibility of supporting bone fracture. It was found that the CRE-PEEK abutment can reduce the elastic deformation and reduce the stress value of the interfacial bone.

치과용 임플란트 지대주 나사 구조에 관한 연구 (Characteristics of Abutment Screw Structure for Dental Implant)

  • 송종법;최일경;정효경;권순홍;권순구;박종민;김종순;정성원;최원식
    • 한국산업융합학회 논문집
    • /
    • 제20권2호
    • /
    • pp.169-176
    • /
    • 2017
  • Dental implants are required to have biomechanical functions and biostability in order to perform authoring, pronunciation, and aesthetic functions in the oral cavity. In terms of biostability, pure titanium for medical have good biostability and no rejection in the alveolar bone. with appropriate strength in terms of strength as well as biocompatibility. In recent years, various surgical methods and devices have been developed to improve the convenience and safety of the procedure. However, as the number of procedures increases, the screw loosening of the abutment screw connecting the artificial root and the abutment There are many reports of artificial root and abutment fracture. Fig. 1 is an example of a case where the upper part of the abutment screw is arbitrarily modified to remove the abutment by the abutment fracture due to the loosening of the abutment screw. The fundamental cause of abduction of the abutment screw is caused by the slight movement due to the lowering of the retention force of the abutment screw. It is necessary to minimize loosening of the abutment screw to avoid problems such as fracture during the period of using the implant. The purpose of this study is to investigate the structure of the abutment screw to prevent the loosening of the abutment screw by forming 0.5mm slot.

DENTIS 내부연결형 서브머지드 임플란트에서 지대주 선택에 따른 성공률의 후향적 연구 (A retrospective randomized study of success rates according to abutment selection in DENTIS submerged implant with an internal hex connection)

  • 김은희;이정은;황희성;김철훈;김정한;김복주
    • 대한치과의사협회지
    • /
    • 제56권11호
    • /
    • pp.605-614
    • /
    • 2018
  • PURPOSE. The purpose of this study is to determine the efficacy of the DENTIS submerged-type implant with an internal hex connection and to build corresponding abutment-selection criteria. MATERIAL AND METHODS. A total of 204 patients received submerged implant fixtures with an internal hex connection at the Dong-A University Hospital Dental clinic in Busan from January 2013 and May 2016. Three specific abutments, UCLA abutments, customized abutments, ready-made abutments, were randomly selected. Implant success was defined as the basis of the International Congress of Oral Implantologists(ICOI, 2007) criteria. The relationship between the implant success rate and the abutment factor was analyzed using the Kruskal-Wallis test(P<.05). RESULTS. A total of 508 implants were placed in 204 patients. After a mean observation period of 38.6 months, 493 out of 508 implants were in normal function, yielding an overall success rate of 97.05%. A total of 15 implants failed: 10 in the maxillary molar area, 4 in the mandibular molar area, and 1 in the mandibular incisal area. All of the implant failures occurred in a single-implant prosthesis, especially high in the maxillary molar area. The Kruskal-Wallis analysis showed that abutment selection has no significant correlation with implant failure(P>.05). CONCLUSION. DENTIS submerged implants with an internal hex connection showed predictable results with a success rate of 97.05%. It is no influence on the success rate in the selection of submerged implant abutment with an internal hex connection.

  • PDF

티타늄 및 PEEK 지대주 소재가 임플란트 유지 수복물 및 주위 지지골 응력 분포에 미치는 영향: 3차원 유한요소해석 (Effects of titanium and PEEK abutments on implant-supported dental prosthesis and stress distribution of surrounding bones: three-dimensional finite element analysis)

  • 홍민호
    • 대한치과기공학회지
    • /
    • 제44권3호
    • /
    • pp.67-75
    • /
    • 2022
  • Purpose: This study aimed to comparatively evaluate the stress distribution of bones surrounding the implant system to which both titanium and polyetheretherketone (PEEK) abutments are applied using a three-dimensional finite element analysis. Methods: The three-dimensional implant system was designed by the computer-aided design program (CATIA; Dassault Systemes). The discretization process for setting nodes and elements was conducted using the HyperMesh program (Altair), after finishing the design of each structure for the customized abutment implant system. The results of the stress analysis were drawn from the Abaqus program (Dassault Systèmes). This study applied 200 N of vertical load and 100 N of oblique load to the occlusal surface of a mandibular first molar. Results: Under external load application, the PEEK-modeled dental implant showed the highest von Mises stress (VMS). The lowest VMS was observed in the Ti-modeled abutment screws. In all groups, the VMS was observed in the crestal regions or necks of implants. Conclusion: The bones surrounding the implant system to which the PEEK abutment was applied, such as the cortical and trabecular bones, showed stress distribution similar to that of the titanium implant system. This finding suggests that the difference in the abutment materials had no effect on the stress distribution of the bones surrounding implants. However, the PEEK abutments require mechanical and physical properties improved for clinical application, and the clinical application is thought to be limited.

골관절증 환자에서 하악 운동 추적 장치와 이중 스캔 기법을 활용한 완전 구강 회복 증례 (Complete mouth rehabilitation, using jaw motion tracking and double scan technique in a patient with osteoarthrosis: a case report)

  • 정서경;곽재영;허성주;김성균;박지만
    • 대한치과보철학회지
    • /
    • 제62권1호
    • /
    • pp.82-94
    • /
    • 2024
  • 본 증례는 치아의 전반적 마모를 보이며 구치부 지지가 소실된 환자를 대상으로 전악 수복을 진행한 증례이다. 측두 하악 관절의 상태를 분석 후, 붕괴된 교합을 회복하기 위해 다수의 임플란트가 식립되었다. 고정체/지대주 수준의 인상 채득에서, 교차 마운팅을 위한 여러 번의 복잡한 교합 기록을 동반하는 전통적 인상 채득 방법 대신 구강 스캐너를 이용한 방식을 채득하였다. 하악의 불안정한 움직임을 반영하기 위해, '하악 운동 추적(jaw motion tracking)'장치와 '디지털 안궁 이전(digital face-bow transfer)'을 이용하였고, 이차 임시 수복물을 기반으로 하여 최종 수복물로 복제하는 '이중 스캔 기법(double scan technique)'으로 최종 수복물을 제작하였다. 위와 같은 디지털 기술을 이용하여 불안정한 교합을 갖는 환자에게 보다 짧은 체어 타임으로 완전 구강 회복을 진행할 수 있다.

티타늄 합금, 지르코니아, 폴리에테르에테르케톤 지대주 재질에 따른 임플란트 구성요소의 응력분포: 유한 요소 분석을 통한 비교 연구 (Stress distribution in implant abutment components made of titanium alloy, zirconia, and polyetheretherketone: a comparative study using finite element analysis)

  • 김성민
    • 대한치과기공학회지
    • /
    • 제46권2호
    • /
    • pp.21-27
    • /
    • 2024
  • Purpose: This study aimed to analyze the stress distribution and deformation in implant abutments made from titanium (Ti-6Al-4V), zirconia, and polyetheretherketone (PEEK), including their screws and fixtures, under various loading conditions using finite element analysis (FEA). Methods: Three-dimensional models of the mandible with implant abutments were created using Siemens NX software (NX10.0.0.24, Siemens). FEA was conducted using Abaqus to simulate occlusal loads and assess stress distribution and deformation. Material properties such as Young's modulus and Poisson's ratio were assigned to each component based on literature and experimental data. Results: The FEA results revealed distinct stress distribution patterns among the materials. Titanium alloy abutments exhibited the highest stress resistance and the most uniform stress distribution, making them highly suitable for long-term stability. Zirconia abutments showed strong mechanical properties with higher stress concentration, indicating potential vulnerability to fracture despite their aesthetic advantages. PEEK abutments demonstrated the least stress resistance and higher deformation compared to other abutment materials, but offered superior shock absorption, though they posed a higher risk of mechanical failure under high load conditions. Conclusion: The study emphasizes the importance of selecting appropriate materials for dental implants. Titanium offers durability and uniform stress distribution, making it highly suitable for long-term stability. Zirconia provides aesthetic benefits but has a higher risk of fracture compared to titanium. PEEK excels in shock absorption but has a higher risk of mechanical failure compared to both titanium and zirconia. These insights can guide improved implant designs and material choices for various clinical needs.

치과용 CAD/CAM 밀링기에 대한 치과의료종사자들의 선호도 조사 (Survey study on the Preference of Dental Medical Personnel for Dental CAD/CAM Milling Machines)

  • 송은성;김봉주;임영준;이준재
    • 대한치과보철학회지
    • /
    • 제56권3호
    • /
    • pp.188-198
    • /
    • 2018
  • 목적: 최근 디지털 기술의 발달과 더불어 치과영역에서도 다양한 보철물 제작을 위해 Computer aided design/computer aided manufacture (CAD/CAM) 시스템의 사용이 확대되고 있다. CAD/CAM 시스템은 전통적인 방식의 보철물 제작의 단점을 극복하여, 치과의사와 치기공사가 보철물을 제작할 때, 환자에게 한 두 번의 병원 방문으로도 정확하고 정밀도 높은 보철물의 제공이 가능하게 할 수 있다. 본 논문은 현재 국내의 CAD/CAM 시스템 현황 및 인식을 파악함으로써 새로 장비를 도입할 때 고려해야 할 항목에 대한 조언을 제공하고자 한다. 대상 및 방법: 본 설문 조사는 서울대학교 치과 병원을 포함한 전국 298 명의 치과의사, 치과위생사 및 치과기공사를 대상으로 2016년 11월부터 12월까지 2 개월간 우편을 통해 실시하였다. 결과: 치과용 CAD/CAM 밀링기 구매 시 가장 고려하는 요인은 밀링기의 성능(64.43%)이었으며 용도는 치과보철물 제작과 임플란트용 맞춤형 지대주 제작이 49.33%로 가장 높았다. 또한, 응답자의 약 60% 이상이 CAD/CAM 밀링기가 만족할 만한 성능으로 개선된다면 새로운 장비의 구매에 대해 긍정적인 답변을 보였다. 결론: 설문조사 분석결과, 성능이 개선된 CAD/CAM 밀링기 디지털화 및 4차 산업혁명을 대비하는 치과산업에서 중요한 역할을 할 것으로 여겨진다.