DOI QR코드

DOI QR Code

Effects of titanium and PEEK abutments on implant-supported dental prosthesis and stress distribution of surrounding bones: three-dimensional finite element analysis

티타늄 및 PEEK 지대주 소재가 임플란트 유지 수복물 및 주위 지지골 응력 분포에 미치는 영향: 3차원 유한요소해석

  • Hong, Min-Ho (Department of Dental Laboratory Science, College of Health Sciences, Catholic University of Pusan)
  • 홍민호 (부산가톨릭대학교 보건과학대학 치기공학과)
  • Received : 2022.05.10
  • Accepted : 2022.08.10
  • Published : 2022.09.30

Abstract

Purpose: This study aimed to comparatively evaluate the stress distribution of bones surrounding the implant system to which both titanium and polyetheretherketone (PEEK) abutments are applied using a three-dimensional finite element analysis. Methods: The three-dimensional implant system was designed by the computer-aided design program (CATIA; Dassault Systemes). The discretization process for setting nodes and elements was conducted using the HyperMesh program (Altair), after finishing the design of each structure for the customized abutment implant system. The results of the stress analysis were drawn from the Abaqus program (Dassault Systèmes). This study applied 200 N of vertical load and 100 N of oblique load to the occlusal surface of a mandibular first molar. Results: Under external load application, the PEEK-modeled dental implant showed the highest von Mises stress (VMS). The lowest VMS was observed in the Ti-modeled abutment screws. In all groups, the VMS was observed in the crestal regions or necks of implants. Conclusion: The bones surrounding the implant system to which the PEEK abutment was applied, such as the cortical and trabecular bones, showed stress distribution similar to that of the titanium implant system. This finding suggests that the difference in the abutment materials had no effect on the stress distribution of the bones surrounding implants. However, the PEEK abutments require mechanical and physical properties improved for clinical application, and the clinical application is thought to be limited.

Keywords

Acknowledgement

The authors appreciate the Megagen Implant Research Center (MIRC) for finite element analysis support.

References

  1. Le Guehennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater. 2007;23:844-854. https://doi.org/10.1016/j.dental.2006.06.025
  2. Kim Y, Oh TJ, Misch CE, Wang HL. Occlusal considerations in implant therapy: clinical guidelines with biomechanical rationale. Clin Oral Implants Res. 2005;16:26-35. https://doi.org/10.1111/j.1600-0501.2004.01067.x
  3. Misch CE, Suzuki JB, Misch-Dietsh FM, Bidez MW. A positive correlation between occlusal trauma and peri-implant bone loss: literature support. Implant Dent. 2005;14:108-116. https://doi.org/10.1097/01.id.0000165033.34294.db
  4. Isidor F. Influence of forces on peri-implant bone. Clin Oral Implants Res. 2006;17 Suppl 2:8-18. https://doi.org/10.1111/j.1600-0501.2006.01360.x
  5. Quirynen M, De Soete M, van Steenberghe D. Infectious risks for oral implants: a review of the literature. Clin Oral Implants Res. 2002;13:1-19. https://doi.org/10.1034/j.1600-0501.2002.130101.x
  6. Lindhe J, Berglundh T, Ericsson I, Liljenberg B, Marinello C. Experimental breakdown of peri-implant and periodontal tissues. A study in the beagle dog. Clin Oral Implants Res. 1992;3:9-16. https://doi.org/10.1034/j.1600-0501.1992.030102.x
  7. Lang NP, Bragger U, Walther D, Beamer B, Kornman KS. Ligature-induced peri-implant infection in cynomolgus monkeys. I. Clinical and radiographic findings. Clin Oral Implants Res. 1993;4:2-11. https://doi.org/10.1034/j.1600-0501.1993.040101.x
  8. Hansson S. Surface roughness parameters as predictors of anchorage strength in bone: a critical analysis. J Biomech. 2000;33:1297-1303. https://doi.org/10.1016/S0021-9290(00)00045-2
  9. Duyck J, Naert IE, Van Oosterwyck H, Van der Sloten J, De Cooman M, Lievens S, et al. Biomechanics of oral implants: a review of the literature. Technol Health Care. 1997;5:253-273. https://doi.org/10.3233/thc-1997-5401
  10. Lindquist LW, Rockler B, Carlsson GE. Bone resorption around fixtures in edentulous patients treated with mandibular fixed tissue-integrated prostheses. J Prosthet Dent. 1988;59:59-63. https://doi.org/10.1016/0022-3913(88)90109-6
  11. Goodacre CJ, Bernal G, Rungcharassaeng K, Kan JY. Clinical complications with implants and implant prostheses. J Prosthet Dent. 2003;90:121-132. https://doi.org/10.1016/S0022-3913(03)00212-9
  12. Isidor F. Loss of osseointegration caused by occlusal load of oral implants. A clinical and radiographic study in monkeys. Clin Oral Implants Res. 1996;7:143-152. https://doi.org/10.1034/j.1600-0501.1996.070208.x
  13. Hong MH. Comparison of stress distribution in bone and implant-supported dental prosthesis with zirconia and titanium implants: a 3-dimensional finite element analysis. J Tech Dent. 2020;42:348-354. https://doi.org/10.14347/jtd.2020.42.4.348
  14. Sevimay M, Turhan F, Kilicarslan MA, Eskitascioglu G. Three-dimensional finite element analysis of the effect of different bone quality on stress distribution in an implant-supported crown. J Prosthet Dent. 2005;93:227-234. https://doi.org/10.1016/j.prosdent.2004.12.019
  15. Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials. 2007;28:4845-4869. https://doi.org/10.1016/j.biomaterials.2007.07.013
  16. Sarot JR, Contar CM, Cruz AC, de Souza Magini R. Evaluation of the stress distribution in CFR-PEEK dental implants by the three-dimensional finite element method. J Mater Sci Mater Med. 2010;21:2079-2085. https://doi.org/10.1007/s10856-010-4084-7
  17. Schwitalla AD, Abou-Emara M, Spintig T, Lackmann J, Muller WD. Finite element analysis of the biomechanical effects of PEEK dental implants on the periimplant bone. J Biomech. 2015;48:1-7. https://doi.org/10.1016/j.jbiomech.2014.11.017
  18. Belser UC, Grutter L, Vailati F, Bornstein MM, Weber HP, Buser D. Outcome evaluation of early placed maxillary anterior single-tooth implants using objective esthetic criteria: a cross-sectional, retrospective study in 45 patients with a 2- to 4-year follow-up using pink and white esthetic scores. J Periodontol. 2009;80:140-151. https://doi.org/10.1902/jop.2009.080435
  19. Hansson S, Werke M. The implant thread as a retention element in cortical bone: the effect of thread size and thread profile: a finite element study. J Biomech. 2003;36:1247-1258. https://doi.org/10.1016/S0021-9290(03)00164-7
  20. Kim EY, Hong MH. Influence of zirconia and titanium fixture materials on stress distribution in abutment screws: a three-dimensional finite element analysis. J Tech Dent. 2021;43:42-47. https://doi.org/10.14347/jtd.2021.43.2.42
  21. Pjetursson BE, Zarauz C, Strasding M, Sailer I, Zwahlen M, Zembic A. A systematic review of the influence of the implant-abutment connection on the clinical outcomes of ceramic and metal implant abutments supporting fixed implant reconstructions. Clin Oral Implants Res. 2018;29 Suppl 18:160-183.
  22. Kohal RJ, Papavasiliou G, Kamposiora P, Tripodakis A, Strub JR. Three-dimensional computerized stress analysis of commercially pure titanium and yttriumpartially stabilized zirconia implants. Int J Prosthodont. 2002;15:189-194.
  23. Jorn D, Kohorst P, Besdo S, Rucker M, Stiesch M, Borchers L. Influence of lubricant on screw preload and stresses in a finite element model for a dental implant. J Prosthet Dent. 2014;112:340-348. https://doi.org/10.1016/j.prosdent.2013.10.016
  24. Lee H, Jo M, Noh G. Biomechanical effects of dental implant diameter, connection type, and bone density on microgap formation and fatigue failure: a finite element analysis. Comput Methods Programs Biomed. 2021;200:105863. https://doi.org/10.1016/j.cmpb.2020.105863
  25. Caglar A, Turhan Bal B, Karakoca S, Aydin C, Yilmaz H, Sarisoy S. Three-dimensional finite element analysis of titanium and yttrium-stabilized zirconium dioxide abutments and implants. Int J Oral Maxillofac Implants. 2011;26:961-969.
  26. Caglar A, Bal BT, Aydin C, Yilmaz H, Ozkan S. Evaluation of stresses occurring on three different zirconia dental implants: three-dimensional finite element analysis. Int J Oral Maxillofac Implants. 2010;25:95-103.
  27. Alkan I, Sertgoz A, Ekici B. Influence of occlusal forces on stress distribution in preloaded dental implant screws. J Prosthet Dent. 2004;91:319-325. https://doi.org/10.1016/j.prosdent.2004.01.016
  28. Verri FR, Santiago Junior JF, Almeida DA, Verri AC, Batista VE, Lemos CA, et al. Three-dimensional finite element analysis of anterior single implant-supported prostheses with different bone anchorages. Scientific-WorldJournal. 2015;2015:321528.
  29. Ha SR. Biomechanical three-dimensional finite element analysis of monolithic zirconia crown with different cement type. J Adv Prosthodont. 2015;7:475-483. https://doi.org/10.4047/jap.2015.7.6.475
  30. Licausi MP, Munoz AI, Borras VA, Espallargas N. Tribocorrosion mechanisms of Ti6Al4V in artificial saliva by zero-resistance ammetry (ZRA) technique. J Bio Tribo Corros. 2015;1:8. https://doi.org/10.1007/s40735-015-0008-x