• Title/Summary/Keyword: 임펠러(impeller)

Search Result 389, Processing Time 0.021 seconds

A study on influence of precipitation condition on rounding of AUC particles (AUC 침전조건이 둥근 AUC 입자 제조에 미치는 영향)

  • 김응호;정원명;박진호;유재형;최청송
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.3
    • /
    • pp.454-462
    • /
    • 1998
  • Mechanisms and conditions for rounding of AUC particles were examined during AUC precipitation. Rounding of AUC particle was possible only by external circulation using pump, not by internal circulation using agitator. The rate of AUC rounding $(dn_p/dt)$ was proporational to operation conditions such as magma density $(M_t:g-U/{\iota}l)$, turn over ratio $(T_o)$ and impeller tip velocity of pump (U); $ dn_p/dt{\propto}M_t{\cdot}T_o{\cdot}U^2$. The validity of this relationship was qualitatively confirmed by comparing the expermental results. Two rounding mechanisms were suggested. One is crack formation mechanism and the other etch-pit formation mechanism on the surface of AUC particle. It was found that the crack formation is more dominant at the initial stage and the etch-pit formation at the final stage of the AUC precipitation.

  • PDF

A Study on the Design and Analysis of the Fuel Boost Pump Motor Assembly for an Aircraft (항공기용 연료승압펌프 모터 조립체 설계에 대한 연구)

  • Lee, Jung-hoon;Kim, Joon-tae
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.3
    • /
    • pp.1-8
    • /
    • 2018
  • The fuel pump, which is used for an aircraft, was first developed in Korea through the Civil-Military Dual Components Development Program. The BLDC motor type, which is superior to the DC brush motor when considering efficiency, endurance, and explosive environmental characteristics, was applied to the fuel pump given its capacity and operating condition. The magnetic flux of the permanent magnet was analyzed based on the magnet flux density equation, using the Maxwell equation and the environmental condition. The motor performance, according to the load, was analyzed using the finite element method in order to design validation. The motor assembly was developed by designing the motor drive and the EMI filters. The performance test results of the motor assembly for the fuel boost pump were consistent with the analysis.

Study on the Radial Diffuser of Multistage High Pressure Pump (고압 다단 펌프의 레이디얼 디퓨저에 대한 연구)

  • Kim, Deok Su;Mamatov, Sanjar;Park, Warn Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.11
    • /
    • pp.727-736
    • /
    • 2016
  • In this study, a high-pressure multistage pump used in the combined cycle power plants is analyzed. The pump performance characteristics (differential head and efficiency) are numerically analyzed for different shapes of the radial diffuser. The design variables selected for the radial diffuser are, number of vanes, diameter ratio ($D_4/D_3$), return channel outlet angle(${\alpha}_6$), and pressure recovery factor ($C_p$). The numerical analysis results showed that the differential head and efficiency are the highest when the diameter ratio is the highest. Further, it was observed that the differential head was lower when the return channel outlet angle was $60^{\circ}$ than when it was $90^{\circ}$, because of pre-swirl at the diffuser outlet.

Prediction of Hemolysis in Intra-Cardiac Axial Flow Blood Pumps for Optimization of the Impellers (심장 내 이식형 축류 혈액펌프의 임펠러 최적화를 위한 용혈량 예측)

  • Kim, Dong-Uk;Mitamura, Yoshinori
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.9
    • /
    • pp.431-437
    • /
    • 2002
  • Low hemolysis is one of the key factors in the production of successful rotary blood pumps. It is, however, difficult to identify the areas where hemolysis occurs. Computational fluid dynamics(CFD) analysis enables the engineer to predict hemolysis on a computer Fluid dynamics in five different axial flow pumps was analyzed 3-dimensionally using CFD software. The impeller was rotated at a speed which supplied a flow of 5L/min at a pressure difference of 100mmHg. Changes in the turbulent kinetic energy along streamlines through the pumps were computed. Reynolds' shear stress( (equation omitted) ) was calculated using the turbulent kinetic energy. Hemolysis was evaluated based on Reynolds'shear stress and its exposure time(t) : dHb/Hb=3.62$\times$10$^{-5}$ $t^{0.785}$$\tau$$^{2.416}$ . Hemolysis of the pumps was measured in vitro using fresh bovine blood to which citrate phosphate dextrose was added to prevent clotting. A pump flow of 5L/min was maintained at a pressure difference of 100mmHg for 3h. The normalized index of hemolysis(NIH) as measured. Reynolds' shear stress was high behind the impellers. The measured NIH and the calculated hemolysis(dHb/Hb) shoed a good correlation; NIH=0.0003(dHb/Hb) (r=0.90, n=6) in the range of NIH between 0.003 and 1.1. CFD analysis can predict the in vitro results of hemolysis as well as the areas where hemolysis occurs.ysis occurs.

Instrumentation for Performance Test of Turbo Compressor (터보 압축기 성능시험을 위한 계측기기 선정)

  • Park, Tae-Choon;Kang, Young-Seok;Yang, Soo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.46-52
    • /
    • 2008
  • The instrumentation was studied in order to measure aerodynamic performance and efficiency of a compressor as a component of a 5MW-class gas turbine for power generation. In case of an axial compressor, the distributions of static pressure on a casing can be obtained by averaging at each stage and those of total pressure and temperature in the flow field of the compressor can be measured with a Kiel temperature probe. In case of a centrifugal compressor, the static pressures at the hub and the tip, respectively, of an impeller exit are considerably different, so the pressures need to be measured at both positions and thereafter averaged. The distributions of static pressures in a diffuser and a deswirler are measured at ten positions along five streamlines in one pitch. In addition the flow field can be measured in detail by 5-hole Pitot tube in order to analyze the flow characteristics of the core flow region and wake region and the rotor-stator interaction of the compressor.

  • PDF

A Study on the Pump System Design Optimization for Regional Water Supply Facilities (광역상수도용 펌프의 규격 최적결정방법에 관한 연구)

  • Roh, Hyung-woon;Suh, Sang-Ho;Kim, Kyung-Yup;Kim, Sung-Won;Kim, Il-Soo;Park, Jong-Moon;Park, HeeKyung;Park, No-Suk;Lee, Bong-Joo;Lee, Jeung-Woo;Lee, Young-Bum;Lee, Young-Ho;Kim, Sang-Gyun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.159-164
    • /
    • 2001
  • An extensive range of pumping facilities are employed in the regional water supply system in metropolitan areas, and optimization and the systematic combination of the pump facilities have direct bearing on the stability and economy of the water supply system concerned. These systems must be able to guarantee stability, efficiency and offer high reliability. Preparation of metropolitan area regional water supply system construction project must include a basic plan which takes into account the suitability of pumping facilities to be used, the environment in which facilities will be installed, man-power requirements and basic operational and management policies. This paper contains over-all analysis of the management of metropolitan area regional water supply systems and highlights the cause of Inefficiency and energy waste and puts forward a remedial plan of action. In addition, pump/motor specification programs were developed using Visual Basic to assist selection of the same.

  • PDF

The development of small water-jet propulsion for 150HP grade inboard type (150마력급 선내형 소형 워터제트 추진시스템 개발)

  • Lee, Joong-Seop;Lee, Chi-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.246-252
    • /
    • 2014
  • This study is on the development of 150PS inboard type of compact water jet propulsion system. The water jet is composed of intake, impeller, diffuser, reverse bucket and main shaft. Components of water jet have been manufactured through precision processing after sand casting. Development of water jet propelled engine has been finally completed by processes which are design, production and inspection on each component. The water jet performance characteristics show that 0.29 m3/s of maximum flow rate and 37 m/s of flow velocity have been secured in the ground test pool. Field test was performed by 21ft test ship that water jet propulsion equipment developed in this study was installed. As a result, the weight of hull, engine and other parts of the ship has been almost 1.2 ton and 45 km/h of maximum sailing speed has been recorded with 3700 rpm of engine in the domestic coast test.

Effect of Sand and Dust Ingestion on Small Gas Turbine Engines (대기 중 모래 먼지 유입이 소형 가스터빈엔진에 미치는 영향에 대한 연구)

  • Rhee, Dong-Ho;Lim, Byeng-Jun;Ahn, Iee-Ki;Koo, Hyun-Chul;Kim, Jee-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.8
    • /
    • pp.791-796
    • /
    • 2012
  • Small gas turbine engines are used in aircraft as an auxiliary power unit (APU) to supply compressed air to start the main engine and for emergency electricity. When an aircraft is operating in an environment in which sand and dust is present in the ambient air, the engines as well as the APU ingest the sand and dust. This causes erosion of the engine and a degradation in its performance. The present study investigated the effect of sand and dust ingestion on small gas turbine engines. The concentration of sand and dust was $4.4{\times}10^{-5}kg$ per unit kg of air, which follows the specification in MIL-E-8593. The test was conducted for 10 h, and the engine performance before and after the test was compared. In addition, a tear-down inspection was conducted to examine the erosion patterns of sub-components such as the impeller and turbine wheel.

Efficient Modal Analysis of Prestressed Structures via Model Order Reduction (모델차수축소법을 이용한 프리스트레스 구조물의 효율적인 고유진동해석)

  • Han, Jeong-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1211-1222
    • /
    • 2011
  • It is necessary to use prestressed modal analysis to calculate the modal frequencies and mode shapes of a prestressed structure such as a spinning blade, a preloaded structure, or a thermally deformed pipe, because the prestress effect sometimes causes significant changes in the frequencies and mode shapes. When the finite element model under consideration has a very large number of degrees of freedom, repeated prestressed modal analyses for investigating the prestress effects might become too computationally expensive to finish within a reasonable design-process time. To alleviate these computational difficulties, a Krylov subspace-based model order reduction, which reduces the number of degrees of freedom of the original finite element model and speeds up the necessary prestressed modal analysis with the reduced order models (ROMs), is presented. The numerical process for the moment-matching model reduction is performed directly on the full order models (FOMs) (modeled in ANSYS) by the Arnoldi process. To demonstrate the advantages of this approach for performing prestressed modal analysis, the prestressed wheel and the compressor impeller under their high-speed rotation are considered as examples.

Design and Performance Tests of a Cryogenic Blower for a Thermal Vacuum Chamber (열진공 챔버용 극저온 블로워 설계 및 성능평가)

  • Seo, Heejun;Cho, Hyokjin;Park, Sungwook;Moon, Gueewon;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.11
    • /
    • pp.1008-1015
    • /
    • 2015
  • Thermal vacuum test should be performed prior to launch to verify satellites' functionality in extremely cold/hot temperatures and vacuum conditions. A thermal vacuum chamber used to perform the thermal vacuum tests of a satellite system and its components. A cryogenic blower is a core component of the gaseous nitrogen (GN2) closed loop thermal control system for thermal vacuum chambers. A final goal of this research is development of cryogenic blower. Design requirements of a blower are 150 CFM flow rate, 0.5 bara pressure difference, hot and cold temperatures. This paper describes the performance analysis of impeller by 1D, CFD commercial software, the design of the thermal protection interface between the driving part and the fluid part. The performance of the cryogenic blower is confirmed by test at the standard air condition and is verified by on the thermal vacuum chamber at the real operating condition.