• Title/Summary/Keyword: 임계응력

Search Result 223, Processing Time 0.036 seconds

Intermediate Principal Stress Dependency in Strength of Transversely Isotropic Mohr-Coulomb Rock (평면이방성 Mohr-Coulomb 암석 강도의 중간주응력 의존성)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.23 no.5
    • /
    • pp.383-391
    • /
    • 2013
  • A number of true triaxial tests on rock samples have been conducted since the late 1960 and their results strongly suggest that the intermediate principal stress has a considerable effect on rock strength. Based on these experimental evidence, various 3-D rock failure criteria accounting for the effect of the intermediate principal stress have been proposed. Most of the 3-D failure criteria, however, are focused on the phenomenological description of the rock strength from the true triaxial tests, so that the associated strength parameters have little physical meaning. In order to confirm the likelihood that the intermediate principal stress dependency of rock strength is related to the presence of weak planes and their distribution to the preferred orientation, true triaxial tests are simulated with the transversely isotropic rock model. The conventional Mohr-Coulomb criterion is extended to its anisotropic version by incorporating the concept of microstructure tensor. With the anisotropic Mohr-Coulomb criterion, the critical plane approach is applied to calculate the strength of the transversely isotropic rock model and the orientation of the fracture plane. This investigation hints that the spatial distribution of microstructural planes with respect to the principal stress triad is closely related to the intermediate principal stress dependency of rock strength.

A study of mixed-mode interlaminar fracture toughness of graphite/epoxy composite (炭素纖維强化 複合材料의 혼합모우드 層間破壞靭性値에 대한 硏究)

  • 윤성호;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.2
    • /
    • pp.198-207
    • /
    • 1986
  • This study investigates interlaminar fracture characteristics of Graphite/Epoxy composite (HFG Graphite/Epoxy) under mode I (opening mode), mode II (sliding mode) and mixed mode loading conditions. The effects on interlaminar fracture toughness due to different fiber orientations on the crack surface are also investigated. The antisymmetric test fixture proposed by M. Arcan is used for this test. Both critical stress intensity foctors and critical energy release rates were determined and several mixed mode fracture criteria were compared to the experimental data. Also fracture surfaces were investigaed to obtain informations on the fracture behaviors of Graphite/Epoxy composite by means of a scanning electron microscope(SEM).

Experimental Verification of Compressor Blade Aeromechanics (압축기 블레이드 Aeromechanics의 시험적 검증)

  • Choi, Yun Hyuk;Park, Hee Yong;Kim, Jee Soo;Shin, Dong Ick;Choi, Jae Ho;Kim, Yeong Ryeon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.240-244
    • /
    • 2017
  • Experimental verification in the rig test stage for component development is a vital link between the aeromechanical design and structural integrity validation process. Based on this premise, Non-Intrusive Stress Measuring System was adopted on the axial compressor test rig to measure the static and dynamic tip deflection of all blades by using tip-timing sensors. Through analyzing vibration characteristics, we evaluated the vibratory stresses seen on the blades fatigue critical location; detected synchronous resonances which are the source of High Cycle Fatigue (HCF) in blades; presented non-synchronous vibration response by aerodynamic excitation and individual blade mis-tuning patterns.

  • PDF

Evaluation Method of Bonded Strength in Adhesively Bonded Structures of the Aluminum Alloys (알루미늄 합금의 접착구조물에 대한 접착강도의 평가방법)

  • 정남용
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.1
    • /
    • pp.35-44
    • /
    • 1999
  • In a view point of earth environmental protection and social requirement, adhesively bonded structures of aluminum alloys have become to be employed for the purpose of decreasing fuel ratio by weight reduction and to improve performance in various engineering fields such as aircrafts, automobiles, rolling stocks and so on. In spite of such wide applications in adhesively bonded structures of aluminum alloys, the quantitative fracture criterion and evolution method of its bonded strength have not been established yet. The objective of this paper is to establish fracture criterion considering stress singularity at interface edges in adhesively bonded structures of aluminum alloys. Through the analyses of boundary element method and static fracture experiments with three different types of specimens in the adhesively bonded joints of aluminum alloys, its fracture criterion was proposed and discussed about strength evolution of adhesively bonded structures.

  • PDF

Mixed Mode Fracture of the Crack Inclined to the Grain Direction in Wood (목재(木材)의 섬유방향(纖維方向)에 경사(傾斜)진 균열의 혼합모-드파괴(破壞)에 관한 연구)

  • Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.83-88
    • /
    • 1989
  • 목재의 섬유방향에 경사진 균열의 모-드I과 모-드II의 혼합모-드파괴시의 파괴거동을 조사하기 위하여 라왕(Shorea Spp.)의 LA시스템에 있어서 서로 다른 경사각도를 가진 SEN시험편(Single edge notch specimen)에 대하여 휨 시험을 행하였다. 얻이진 결과는 혼합모-드파괴시, 모-드I응력확대계수$K_I$과 모-드II응력확대계수$K_II$간에 일정한 상호작용이 존재한다는 것을 나타내었다. 또한, 모-드I과 모-드II의 임계응력확대계수(Critical stress intensity factor) $K_{IC}$$K_{IIC}$ 이용하여 혼합모-드파괴시의 $K_I$$K_II$간의 상호관계를 규정할 수 있었으며, 이미 보고된 여러 실험식과 본 실험결과를 비교하여 가장 적합한 관계로서 아래와 같은 관계를 얻을 수 있었다.

  • PDF

Zr-2.5%Nb 합금의 강도에 미치는 집합조직의 영향

  • 김성수;김영석;국일현
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05b
    • /
    • pp.629-634
    • /
    • 1995
  • Zr-2.5 % Nb 합금 압력관에서 집합조직이 강도에 미치는 영향을 조사하여 기저면 성분(F)의 강화 효과를 분리하였으며 아울러 온도에 따른 강도의 변화를 조사하였다. As-received 압력관 재료의 상온 항복 강도는 인장 응력에 수직한 면에서 측정한 기저면 성분(F)에 대하여 $\sigma$$_{YS}$ =600 + 410 F 의 관계를, annealing 처리한 등축정 재료의 상온 항복 강도는 $\sigma$$_{YS}$ = 410 +310 F 의 관계를 따르는 것으로 나타나 기저면 성분이 주도적인 강화 효과를 갖는다는 것을 확인 할 수 있다. 따라서 Zr 합금의 항복 강도는 인장 응력에 수직한 면에서의 기저면 성분에 따라 좌우되며, Zr-2.5% Nb 압력관에서 길이 및 원주 방향에서의 항복 강도의 차이는 주로 기저면 성분의 차이 (F)에 의한 것이라고 결론지을 수 있다. $\alpha$-Zr 에서 슬립과 쌍정의 임계 전단 응력 및온도에 따른 변형 기구의 변화에 대하여 논의하였다.

Coupled Finite Element Analysis of Partially Saturated Soil Slope Stability (유한요소 연계해석을 이용한 불포화 토사사면 안전성 평가)

  • Kim, Jae-Hong;Lim, Jae-Seong;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.4
    • /
    • pp.35-45
    • /
    • 2014
  • Limit equilibrium methods of slope stability analysis have been widely adopted mainly due to their simplicity and applicability. However, the conventional methods may not give reliable and convincing results for various geological conditions such as nonhomogeneous and anisotropic soils. Also, they do not take into account soil slope history nor the initial state of stress, for example excavation or fill placement. In contrast to the limit equilibrium analysis, the analysis of deformation and stress distribution by finite element method can deal with the complex loading sequence and the growth of inelastic zone with time. This paper proposes a technique to determine the critical slip surface as well as to calculate the factor of safety for shallow failure on partially saturated soil slope. Based on the effective stress field in finite element analysis, all stresses are estimated at each Gaussian point of elements. The search strategy for a noncircular critical slip surface along weak points is appropriate for rainfall-induced shallow slope failure. The change of unit weight by seepage force has an effect on the horizontal and vertical displacements on the soil slope. The Drucker-Prager failure criterion was adopted for stress-strain relation to calculate coupling hydraulic and mechanical behavior of the partially saturated soil slope.

Forced Vibration Modeling of Rail Considering Shear Deformation and Moving Magnetic Load (전단변형과 시간변화 이동자기력을 고려한 레일의 강제진동모델링)

  • Kim, Jun Soo;Kim, Seong Jong;Lee, Hyuk;Ha, Sung Kyu;Lee, Young-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1547-1557
    • /
    • 2013
  • A forced vibration model of a rail system was established using the Timoshenko beam theory to determine the dynamic response of a rail under time-varying load considering the damping effect and stiffness of the elastic foundation. By using a Fourier series and a numerical method, the critical velocity and dynamic response of the rail were obtained. The forced vibration model was verified by using FEM and Euler beam theory. The permanent deformation of the rail was predicted based on the forced vibration model. The permanent deformation and wear were observed through the experiment. Parametric studies were then conducted to investigate the effect of five design factors, i.e., rail cross-section shape, rail material density, rail material stiffness, containment stiffness, and damping coefficient between rail and containment, on four performance indices of the rail, i.e., critical velocity, maximum deflection, maximum longitudinal stress, and maximum shear stress.

A Study on the Buckling Strength of Stern Skeg Shell Plate (선미 스케그 외판의 좌굴강도에 관한 연구)

  • Choi, Kyung-Shin;Seol, Sang-Seok;Kim, Jin-Woo;Kong, Seok-Hwan;Chung, Won-Jee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.1
    • /
    • pp.80-87
    • /
    • 2021
  • Most container ships are currently being constructed as Ultra-Large Container Ships. Hence, the equipment of the ships is also becoming relatively large. In particular, propellers, rudders, and rudder stocks are large in the stern structure, and in relation, efficient design of the hull structures to safely secure these parts is important. The bottom shell plate surface of a stern skeg is a perforated plate from which the rudder stock penetrates, so it is an important component for the stern structure. In this paper, to determine the critical buckling of the shell plate, an interaction curve equation for the two-axis compression of the shell plate was derived using the maximum value of the static structural stress multiplier in a load multiplier mode. This equation predicts the timing of the buckling occurrence. By analyzing this interaction curve equation, the buckling behavior of the plates subjected to a combination load was determined and the usefulness of applying it to ship building was investigated.

A Study on Microscopic Deformation Behaviors of $Nb_3Sn$ Superconducting Composite Tape using Acoustic Emission Technique ($Nb_3Sn$ 복합초전도 테이프의 미시적 변형거동 특성평가를 위한 음향방출기법 적용에 관한 연구)

  • 이민래;이준현
    • Composites Research
    • /
    • v.12 no.6
    • /
    • pp.22-30
    • /
    • 1999
  • Since the surface diffusion processed $Nb_3Sn$ superconducting tape has the advantage of having large overall critical current density. it is used for the construction of open type MRI superconducting magnets. However one of the disadvantages of this tape is that $Nb_3Sn$ compound often exhibited multiple cracking due to its intrinsic brittleness when subjected to mechanical loading such as bending and winding during the fabrication process for superconducting coil. This will eventually cause the severe degradation of critical current density. Therefore it is important to understand the microscopic deformation behavior of this kind of superconducting tape under the mechanical loading.In this study, acoustic emission(AE) was used to clarify microscopic deformation behavior at room temperature for $Nb_3Sn$ superconducting tape which was strengthened and stabilized with copper. For this purpose, special attention was paid to AE characteristics including AE event, energy, and amplitude distribution which were associated with microscopic mechanism of deformation of $Nb_3Sn$ superconducting tape under tensile load.

  • PDF