• Title/Summary/Keyword: 임계유동

Search Result 224, Processing Time 0.029 seconds

The Change of Backlayer Length with the Ventilation Air Velocity in the Tunnel Fire (터널화재에서 환기속도와 backlayer의 길이변화)

  • 김성준;이민규
    • Fire Science and Engineering
    • /
    • v.17 no.3
    • /
    • pp.50-54
    • /
    • 2003
  • The backlayer phenomena of smoke in the road tunnel is evaluated through numerical experiments. A commercial code, PHOENICS is used to simulate smoke flow in the road tunnel. The independent and dependent variables are ventilation air velocity and the length of backlayer of smoke respectively. Hybrid scheme and $textsc{k}-\varepsilon$ turbulence model is adopted in the simulation process and mass residual is used as a convergence criterion. The experimental results say that the length of backlayer is reduced linearly with the increase of ventilating air velocity and that there is a critical air velocity which prevents from the onset of backlayering phenomena. One finds that there is a fresh air region near the bottom of tunnel which could make the passenger escape from the region polluted by smoke. These phenomena come from the severe vertical stratification of the smoke air mixture in the tunnel.

Powder Characteristic Changes of Spray-Dried WC-17%Co Composite Powder by Heat Treatment (분무건조된 WC-17%Co 복합분말의 열처리에 따른 분말특성변화)

  • Seol, Dong-Uk;Kim, Byeong-Hui;Seo, Dong-Su
    • Korean Journal of Materials Research
    • /
    • v.7 no.12
    • /
    • pp.1027-1032
    • /
    • 1997
  • 본 연구에서는 용사용WC-17%Co 복합분말을 분무건조법으로 제조하고 열처리 온도(85$0^{\circ}C$, 100$0^{\circ}C$, 115$0^{\circ}C$, 130$0^{\circ}C$)에 따른 조립분말의 미세구조, 입도분포, 유동도, 및 결정상변화를 고찰하였다. 분무건조상태의 입형은 구형이었으며, 입도분포, 평균입자크기, 유동성은 각각 20.6-51.7$\mu\textrm{m}$, 27.2$\mu\textrm{m}$, 0.26 sec/g 이었다. 열처리에 의하여 조립분말은 치밀화되어 130$0^{\circ}C$ 열처리 후에는 입도분포와 평균입자크기가 각 각 6.9-37.9$\mu\textrm{m}$과 17.8$\mu\textrm{m}$로 감소하였으며, 유동성은 0.12 sec/g로 향상되었다. 열처리중에 WC와 Co의 상화확산에 의하여 Co$_{6}$W$_{6}$C및 Co$_{3}$W$_{3}$C이 생성되었으며, 두 상이 나타나는 임계온도는 115$0^{\circ}C$이었다.

  • PDF

Pump and Temperature Effects on Drag Reducing Additives in Turbulent Pipe Flows (난류 관유동에서 마찰저항감소 첨가제에 대한 펌프와 온도의 영향)

  • Park, S.R.;Suh, H.S.;Yoon, H.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.3
    • /
    • pp.330-337
    • /
    • 1996
  • The effects of pump and temperature on drag reducing characteristics were investigated with a polymer(PAAM : Polyacrylamide) and three kinds of surfactants(CTAC, STAC, Habon-G) in fully developed turbulent pipe flows with various experimental parameters such as additive concentration(30~500ppm), pipe diameter(4.65mm, 10.85mm), Reynolds number($4{\times}10^4{\sim}10^5$) and working fluid temperature($20{\sim}80^{\circ}C$). The pump effect on PAAM was severe such that the drag reduction rates obtained with pump were decreased upto 30% as compared with those obtained with compressed air in 4.65mm test section. The temperature effect on PAAM was noticeably considerable, that is, the higher temperaute, the less drag reduction rate. On the other hand, no significant pump effect on the surfactants was observed. The drag reducing effectiveness of CTAC was totally lost in the temperature ragne of 60 to $80^{\circ}C$, whereas STAC and Habon-G kept their distinct drag reducing capability at a temperature of $80^{\circ}C$. This study clearly elucidated that for DHC application of drag reducing additives, the pump and temperature effects as well as additive concentration and pipe diameter should be carefully taken into consideration.

  • PDF

Wearable Device based Discrimination Algorithm for Dangerous Situation (웨어러블 디바이스 기반 위험상황 식별 알고리즘)

  • Yu, Dong-Gyun;Cho, Kwang-Hee;Hwang, Jong-Sun;Kim, Han-Kil;Jung, Hoe-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.605-606
    • /
    • 2016
  • Recently utilizing various wearable device has been going research to provide new services. Conventional wearable devices provide a service to a user by measuring the biological information. However, by measuring the biometric information such a situation the value of the algorithm, the user state and insufficient technology. In this paper, by utilizing an acceleration sensor and the rate sensor set a threshold for measuring the biological information, and heart rate and movement in order to solve this problem. And it proposes an algorithm to cope with the user's status and identifying emergency situations.

  • PDF

A Study on the Optimum of Closed ${CO}_{2}$ Gas Turbine Process for Nuclear Energy Power Plant(I) (원자력 발전소에 대한 밀폐 ${CO}_{2}$ 가스터빈 프로세스의 최적화 연구 I)

  • 이찬규;이종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.490-499
    • /
    • 1989
  • These days the closed cycle gas turbine attracts considerable attention due to : (1) The possibility of directly coupling the closed cycle gas turbine with a high temperature gas cooled reactor ; (2) the economical use of dry coolers to reduce the thermal charge of the environment ; and (3) the reduction of pollution and energy consumption, by replacing the domestic hearth by a central heating and power station. In this paper, we selected the optimal cycle from the characteristic of thermodynamic cycle for the optimal design of closed CO$_{2}$ gas turbine cycle usuable in nuclear energy power plant. Also the effects of between the parameters and thermal efficiency were investigated by computer simulation. These results and design data will be added to basics in optimal designing closed CO$_{2}$ cycle gas turbine plant.

Influence of Interface Active substances(Ionic and Amphoteric) on Chemical property and Streaming Electrification of Transformer Oil (이온성 및 양성 계면 활성제가 변압기유의 화학적 특성 및 유동대전에 미치는 영향)

  • 김용운;이덕출
    • Electrical & Electronic Materials
    • /
    • v.10 no.7
    • /
    • pp.719-726
    • /
    • 1997
  • This research was conducted to analyze the change of surface tension, viscosity, streaming current and conductivity of transformer oil when it were injected with the interface active substances.(anionic:S-111, cationic:S-121, amphoteric:S-131) The changes properties of the surface tension and viscosity of the oil which were injected with the interface active substances were divided into the changes area and the minimum reduction area. The surface tension and viscosity of the oil which were injected with three different kinds of interface active substances showed remarkable change at the point where the concentration of the substance in anionic, in cationic and in amphoteric were 100[ppm], 10[ppm] and 1[ppm] respectively. The streaming current and conductivity of the same sample oil were also changed at the same densities of the surface tension and viscosity. For this factor, it was possibile for us to interpret the mechanism of the streaming current and conductivity. Therefore the interface active substances of the three kinds were injected into the oil within the limit of optimal volume, prevention effects of electrification were showed more excellence than unmixed insulating oil.

  • PDF

Dynamic Stability of Rotating Cantilever Pipe Conveying Fluid with Tip mass and Crack (끝단질량과 크랙을 가진 유체유동 회전 외팔 파이프의 동적 안정성)

  • Son, In-Soo;Yoon, Han-Ik;Kim, Dong-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.1
    • /
    • pp.101-109
    • /
    • 2008
  • The stability of a rotating cantilever pipe conveying fluid with a crack and tip mass is investigated by the numerical method. That is, the effects of the rotating angular velocity, mass ratio, crack severity and tip mass on the critical flow velocity for flutter instability of system are studied. The equations of motion of rotating pipe are derived by using the Euler-Bernoulli beam theory and the extended Hamilton's principle. The crack section of pipe is represented by a local flexibility matrix connecting two undamaged pipe segments. Also, the crack is assumed to be in the first mode of fracture and always opened during the vibrations. When the tip mass and crack are constant, the critical flow velocity for flutter is proportional to the rotating angular velocity of pipe. In addition, the stability maps of the rotating pipe system as a rotating angular velocity and mass ratio ${\beta}$ are presented.

A Study on Characteristics of Beat in Horizontal Storage Tank (수평축열조내의 열특성에 관한 연구)

  • Pak, Ee-Tong;Jeong, Un-Chul
    • Solar Energy
    • /
    • v.14 no.2
    • /
    • pp.3-16
    • /
    • 1994
  • The major objectives of the study are to suggest the optimal basic design conditions for the horizontal storage tank system. For this purspose computer simulation has been carried out to find the characteristics of flow patterns in horizontal storage tank, and experiments have been carried out for the duration of one turnover, Experimental parameters are volume flow rate(1 LPM to 4 LPM), amount of heat generated from heat sources(0 W to 100 W), and inlet and outlet port types of the storage tank(DD type, DO type, ID type, IO type).

  • PDF

Performance Assessment of the Dual-Throat Nozzle Thrust Vector Control in a 3D Rectangular Nozzle (3D 직사각형 노즐에서 이중 스 로트 노즐 스러스트 벡터 제어의 성능 평가)

  • Wu, Kexin;Kim, Tae Ho;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.4
    • /
    • pp.12-24
    • /
    • 2020
  • The dual-throat nozzle is an extremely effective method in the thrust vectoring control field, utilizing another convergent section to connect with the divergent part of the conventional convergent-divergent nozzle. In the present research, the numerical simulation is conducted to investigate the effects of the injection angle on thrust vectoring performance in a 3D supersonic nozzle. Five injection angles are discussed and core performance variations are analyzed, including the deflection angle, injected mass flow ratio, system resultant thrust ratio, efficiency, Mach number contour and streamline on the symmetry plane, and Mach number contours at different slices. Meaningful conclusions are offered for fighter jet designers.

An Experimental Study on the Effect of Capillary Pressure on the Void Formation in Resin Transfer Molding Process (수지이동 성형공정에서 기공형성에 미치는 모세관압의 영향에 관한 실험적 연구)

  • 이종훈;김세훈;김성우;이기준
    • The Korean Journal of Rheology
    • /
    • v.10 no.4
    • /
    • pp.185-194
    • /
    • 1998
  • Flow-induced voids during resin impregnation and poor fiber wetting give serious effects on the mechanical properties of composites in resin transfer molding process. In order to better understand the characteristics of resin flow and to investigate the mechanism of void formation, flow visualization experiment for the resin impregnation was carried out on plain weaving glass fiber mats using silicon oils with various viscosity values. The permeability and the capillary pressure for the fiber mats of different porosities were obtained by measuring the penetration length of the resin with time and with various injection pressure. At low porosity and low operating pressure, the capillary pressure played a significant role in impregnation process. Video-assisted microscopy was used in taking the magnified photograph of the flow front of the resin to investigate the effect of the capillary pressure on the void formation. The results showed that the voids were formed easily when the capillary pressure was relatively high. No voids were detected above the critical capillary number of 2.75$\times$$10^{-3}, and below the critical number the void content increased exponentially with decrease of the capillary number. The content of void formed was independent of the viscosity of the resin. For a given capillary number, the void content reduced with the lower porosity of the fiber mat.

  • PDF