• Title/Summary/Keyword: 일축 압축

Search Result 694, Processing Time 0.022 seconds

Non-contact Stress Measurement in Steel Member using Piezospectroscopy (압분광법을 이용한 강재의 비접촉식 응력측정)

  • Kim, Jongwoo;Kim, Namgyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.92-95
    • /
    • 2019
  • In this paper, a novel laser-based non-contact and non-destructive stress measurement technique is newly proposed for measuring stress in steel structural members. As the demand of stress monitoring in structural members is increased, various non-destructive techniques are being applied to the field of structural health monitoring. Spectroscopic techniques are non-contact technique and widely used for chemical identification of target materials. Especially, piezospectroscopic technique is a residual stress measurement technique in thermal barrier coatings. Although the piezospectroscopic technique has high possibility of measuring structural stress in steel members, the technique has been rarely applied to this field. In this paper, piezospectroscopy-based stress measurement technique is, therefore, proposed for measuring stress in steel structural member. To do that, alumina particles have been coated onto a specimen of a structural steel rod using a thermal spray coating technique. And then, an uniaxial compression test has been conducted to the specimen to collect each fluorescence spectrum under different loading conditions. Finally, the linear relation of spectral shift and applied compressive stress of the specimen has been experimentally established.

The Strength Characteristics of Deep Mixing Ground According to Increasing Water Contents (함수비 증가에 따른 심층혼합지반의 강도특성)

  • Park, Choon-Sik;Choi, Jun-Sam
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.3
    • /
    • pp.25-35
    • /
    • 2019
  • A laboratory test on uniaxial compressive strength was carried out by making 640 specimens in total, which were divided into two groups by their curing time of 7 and 28 days for 3 water content conditions of a water content at 100% saturation level and 10% and 20% increased water content from the state with clay, sand and gravel mixed grounds of 20 ground conditions of 4 types of stabilizer mixing conditions which were 8%, 10%, 12%, 14%, to understand laboratory strength characteristics for strength design of deep mixing ground. In case of clayey grounds, although the strength increased depending on the increase of stabilizer content, it showed to be analogous regardless of the curing time. And the impact on the strength development of deep mixing specimen according to water content was considered to be comparatively little compared to other grounds. For sandy grounds, the strength increment amount clearly showed to increase as stabilizer content increased, and also the increase of water content was determined to be decreasing the strength increment effect. For gravel mixed grounds, at 14% or over of stabilizer content, the effect on strength development was big making a large increase in strength, but compared to sandy grounds, the strength ratio depending on the curing time showed to be small.

The Durability of Environmentally Friendly Inorganic Grouting Material(NDS) (친환경적인 무기질계 주입재(NDS)의 내구성에 관한 연구)

  • Lee, Hyejin;Lee, Jonghwi;Jung, kyoungsik;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.7
    • /
    • pp.49-56
    • /
    • 2011
  • Recently, the ground injection method using water glass as one of the components of the main resources and the products of the construction has some basic problems for permanent reinforcement of foundation and stopping leakage of water because it has some serious problems such as durability reduction, compression strength reduction and eluviation. This study was to evaluate the environmental impact and durability of the developed friendliness of Natural and Durable Stabilizer(NDS) of inorganic injection and Space Grouting Roket(SGR) with typical water glass type material. Two materials, NDS and SGR, were compared with each other by unconfined compressive strength test, fish poison test, durability test and triaxial permeability test. The results of the durability test indicated that the 28-day strength of the NDS was 1.5 times higher than that of the SGR. The fish poison test proved that the survival rate in the SGR and NDS is 50~70%, and 100%, respectively. Therefore, the NDS has higher survival rate than that of the existing SGR. The NDS will be considered by an environmentally friendly product and moreover it has a few problems for soil and groundwater pollution.

The Engineering Characteristics of the Sludge Mixed Soil (슬러지 혼합토의 공학적 특성)

  • Kim, JungUn;Kim, MyeongKyun;Bae, WooSeok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.5
    • /
    • pp.43-50
    • /
    • 2011
  • As a result of population growth and economic growth, household and industrial wastes continue to rapidly increase every year. Especially, sewage sludge produced at final stage is increasing with the constant construction and putting in good order of the sewage plant. In addition to the government's prohibition for filling up the sludge, it became more and more difficult to discharge wastes to the sea as London Dumping Convention '96 came into effect. And sewage sludge and the livestock wastes are expected to be thoroughly prohibited from discharging to the sea from 2012. So we need desperately economical and useful alternatives to compact and reuse these wastes. The purpose of this study is to evaluate the utilization of solidified sludge-soil mixture as an enhancement and covering material. To determine the proper mixed ratio of solidified sludge, this study conducted basic physical properties tests, compaction tests, uniaxial compression tests, and permeability test. It was found that the higher the ratio of solidified sludge, the lower the coefficient of permeability. Upon the results of particle size distribution, the mixed ratio of solidified sludge that meet the enhancement material condition was 59% or lower for SP granite soil and 48% or lower for SM granite soil respectively.

Performance of Railway Roadbed Reinforced by Acrylate in Laboratory Experiment (실내실험을 통한 아크릴레이트의 철도노반 보강 성능)

  • Yoon, Hwan-Hee;Son, Min;Kim, Jin-Hwan;Kim, Dong-Hyun;Kim, Byung-Hyun;Jung, Hyuk-Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.1
    • /
    • pp.9-19
    • /
    • 2021
  • This paper deals with the reinforcement performance of acrylate for reinforcing the settled railway roadbed. Concrete tracks have the advantage of reducing track maintenance costs and high resistance to track destruction. However, roadbed settlement is occurring in some construction sections, and the safety of railways is a serious concern because of difficulties in maintenance. Currently, maintenance through the track restoration method is being carried out in Korea as a way of roadbed settlement in concrete tracks, but continuous re-settlement can occur because the roadbed itself cannot be reinforced, and there are very few cases of reinforcement of railway roadbeds and field application. So the development of reinforcement materials and construction methods to reinforce railway roadbeds is required. Therefore, in this paper, acrylate was selected as reinforcement material for railway roadbed, and the reinforcement performance of acrylate was analyzed through experiment. As a result, it was analyzed that the acrylate can penetrate into a permeability coefficient of 1×10-4 cm/sec, and secure uniaxial compression strength of 0.5 MPa/30min or more and stiffness of 80 MPa or more.

A Study on the Prediction of Rock Classification Using Shield TBM Data and Machine Learning Classification Algorithms (쉴드 TBM 데이터와 머신러닝 분류 알고리즘을 이용한 암반 분류 예측에 관한 연구)

  • Kang, Tae-Ho;Choi, Soon-Wook;Lee, Chulho;Chang, Soo-Ho
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.494-507
    • /
    • 2021
  • With the increasing use of TBM, research has recently been conducted in Korea to analyze TBM data with machine learning techniques to predict the ground in front of TBM, predict the exchange cycle of disk cutters, and predict the advance rate of TBM. In this study, classification prediction of rock characteristics of slurry shield TBM sites was made by combining traditional rock classification techniques and machine learning techniques widely used in various fields with machine data during TBM excavation. The items of rock characteristic classification criteria were set as RQD, uniaxial compression strength, and elastic wave speed, and the rock conditions for each item were classified into three classes: class 0 (good), 1 (normal), and 2 (poor), and machine learning was performed on six class algorithms. As a result, the ensemble model showed good performance, and the LigthtGBM model, which showed excellent results in learning speed as well as learning performance, was found to be optimal in the target site ground. Using the classification model for the three rock characteristics set in this study, it is believed that it will be possible to provide rock conditions for sections where ground information is not provided, which will help during excavation work.

The Estimation of Appropriate Mixing Amount of Cement-Bentonite Cutoff Walls for Repair and Reinforcement of Reservoir Embankments (저수지 제체의 보수·보강용 Cement-Bentonite 벽체의 적정혼합량 산정)

  • Kim, Taeyeon;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.6
    • /
    • pp.27-32
    • /
    • 2021
  • Due to heavy rainfall and typhoons caused by climate change, it has become common to witness heavy rain that exceeds the design frequency of agricultural reservoirs. This has brought greater attention to the safety of irrigation facilities including agricultural reservoirs. Out of approximately 17,740 reservoirs available in Korea, 83.87% were built before 1970. To ensure the safety of these old reservoirs, their embankments are being repaired and reinforced using various techniques. Among these techniques, using the cement-bentonite cutoff wall makes it possible to construct diaphragm walls with slurry composed of cement and bentonite, while excavation. The advantages of this technique include that it is simple and fast, and ensures the uniformity of cutoff walls by enabling the immediate application of the replacement method to excavation areas; thus excellent performance is guaranteed. However, despite these advantages, the technique is not commonly used in Korea. Thus, this study investigated the changes in strength and permeability by varying the mix ratio of cement and bentonite. As a major experimental results, when the cement of 200 kg/m3 and the bentonite of 60 to 80 kg/m3 is most suitable for the repair and reinforcement of the reservoir embankments.

A Study on Evaluation of Rock Brittleness Index using Punch Penetration Test (압입시험을 이용한 암석의 취성도 평가에 관한 연구)

  • Hoyoung Jeong
    • Tunnel and Underground Space
    • /
    • v.33 no.1
    • /
    • pp.29-41
    • /
    • 2023
  • The brittleness of rocks plays an important role in determining the fragmentation and failure behavior of rock. However, there is still no standard method to evaluate the brittleness of rock, and previous studies have suggested the several definitions for estimation of brittleness of rock. Even in the process of mechanical rock excavation and drilling, the brittleness of rock is considered as an important property for evaluating the excavation efficiency of mechanical excavators or boreability of rock. The previous studies have been carried out to investigate the correlation between different brittleness of rock and cutting efficiency and boreability of rock. This study introduced a method for calculating the brittleness of rock from punch penetration test, and analyzed the correlation between the brittleness of rock calculated by the uniaxial compressive and Brazilian tensile strengths and that from punch penetration test. From the results of correlation analysis, the relationship between various brittleness was confirmed, and it was found that PSI and BI3 showed a good correlation with the strength-based brittleness index. In addition, the results indicated that B3 and B4 are suitable to represent the brittleness of rock in the field of mechanical rock excavation.

Rock Mass Stability of the Buddha Statue on a Rock Cliff using Fracture Characteristics and Geological Face-Mapping (마애불 암반의 단열특성과 지질맵핑을 이용한 안정성 해석)

  • Ihm, Myeong Hyeok
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.539-544
    • /
    • 2023
  • The subject of this study is the Maae Buddha statue in granodiorite of the Mesozoic Cretaceous period, which is concerned about stability as a standing stone cultural property located in ◯◯-dong, Gyeongsangbuk-do. For stability analysis, three-dimensional face mapping, geological properties of joints, three-dimensional scanning, ultrasonic velocity, polarization microscopy, electron microscopy analysis and XRD analysis were performed. In addition, the safety factor of the Maaebul was calculated by analyzing the damage status investigation, stereographic projection analysis, rock classification, and limit equilibrium analysis. The types and scales of damage and possible collapse by section depend on the degree of weathering of the rock and the orientation and characteristics of the joints, but wedge-failure and toppling-failure are expected to be small-scale. The safety factor of Maaebul in dry and wet conditions is less than 1.2, so stability is concerned. The types of damage were mainly observed, such as exfoliation, cracking, granular decomposition, and vegetation growth. The Maaebul rock is granodiorite, and the surface discoloration materials are K, Fe, and Mg. The 4 sets of joints are developed, J1 is tensile joint and the others are shear joint. The uniaxial compressive strength estimated by ultrasonic exploration is 514kgf/cm2, which corresponds to most soft rocks and some weathered rocks. Rock classification(RMR) is estimated to be grade 5, very poor rock mass. These technique along with the existing methods of safety diagnosis of cultural properties are expected to be a reasonable tool for objective interpretation and stability review of stone cultural properties.

Effect of Stress Level on Strength Parameters of Cemented Sand (응력조건에 따른 고결모래의 강도정수 평가)

  • Lee, Moon-Joo;Choi, Sung-Kun;Choo, Hyun-Wook;Cho, Yong-Soon;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.5
    • /
    • pp.143-151
    • /
    • 2007
  • The factors affecting the geotechnical properties of cemented sands are known to be relative density, cementation level, stress level, and particle characteristics such as particle size, shape and surface conditions. It has been widely accepted that the friction angle of cemented sands is not affected by cementation while the cohesion of cemented sands was significantly influenced by cementation. The cementation that is a critical component of the strength of cemented sands will be broken with increasing confining pressure and great caution is required in evaluating the cohesion of cemented specimens due to their fragilities. In this study, a series of drained shear tests were performed with specimens at various cementation levels and confining stresses to evaluate the strength parameters of cemented sands. From the experiments, it was concluded that the cohesion intercept of cemented sand experiences three distinctive zone(cementation control zone, transition zone, and stress control zone), as the cementation level and the confining stress varies. In addition, for accurate evaluation of the strength parameters, the level of confining stress triggering the breakage of cementation bond should be determined. In this study, the relationship between the maximum confining stresses capable of maintaining the cementation bond intact and unconfined compression strength of the cemented sand was established.