• 제목/요약/키워드: 일반화 모델

검색결과 618건 처리시간 0.032초

색상 정보를 포함하여 2차원 대상물 인식에 보다 적합한 일반화된 허프변환에 관한 연구 (A Study on Improving Generalized Rough Transform with Chromatic Informations, Suited for 2D Object Recognition)

  • 백기현;이행세
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.1984-1987
    • /
    • 2003
  • 본 논문에서는 모델에 기반한 2차원 영상인식 알고리즘 중에 하나인 일반화된 허프변환(Generalized Hough Transform)에 대하여 색상정보까지 포함할 수 있도록 기존의 알고리즘을 확장하는 방법을 제시하였고, 이에 의한 실험결과를 간단히 고찰하였다. 기존의 일반화된 허프변환은 대상물의 윤곽선 정보에 기반을 두었기 때문에, 윤곽선 정보가 일치하면 대상물의 색상이나 명암분포가 달라도 동일한 대상물로 인식할 가능성이 있다. 따라서, 일반화된 허프변환을 확장하여 대상물의 모델링과 인식과정에 색상정보(chromatic information)를 포함한다면 2D 영상인식시 컬러정보를 활용할 수 있는 장점이 있다. 여기에서는 실제로 모델링 과정과 인식과정에서 색상정보를 반영하기 위한 간략한 방법과, 이에 따른 실험결과를 제시하였다. 간단한 2D 위치변환이 존재하는 실험에서 윤곽선의 모양이 거의 일치하더라도 색상이 다른 대상물이 존재할 경우에 이를 올바로 구분할 수 있었다.

  • PDF

도립진자 시스템의 LFR에 의한 LMI 혼합 ${H_2}/H_{\infty}$ 제어 (The LMI mixed ${H_2}/H_{\infty}$ control of inverted pendulum system using LFR)

  • 박종우;이상철;이상효
    • 한국통신학회논문지
    • /
    • 제25권7A호
    • /
    • pp.967-977
    • /
    • 2000
  • 본 논문은 도립전자 시스템을 LFR(Linear Fractional Representation)로 표현하여 얻어진 일반화 제어대상에 대하여 혼합 ${H_2}/H_{\infty}$ 제어기법을 적용한다. 먼저, 일반화 제어대상을 얻기 위하여, LFR로 표현한 도립진자의 선형 모델을 유도한다. LFR에서 고려한 구체적인 불확실성은 3개의 비선형 성분과 1개의 진자질량 불확실성이다. 유도된 선형모델에 하중함수를 더하여 LFR 모델을 확대함으로써 일반화된 제어대상을 얻는다. 다음으로, 이 일반화 제어대상에 대하여 혼합 ${H_2}/H_{\infty}$ 제어기를 설계한다. 혼합 ${H_2}/H_{\infty}$ 제어기 설계를 위해서 LMI(Linear Matrix Inequalities) 기법을 이요한다. 설계된 혼합 ${H_2}/H_{\infty}$ 제어기의 제어성능과 강건 안정성을 평가하기 위해서 모의실험과 실물실험을 통하여 $H_{\infty}$ 제어기와 비교한다. 실험결과, $H_{\infty}$ 제어때 보다 적은 피드백 정보만으로도 혼합 ${H_2}/H_{\infty}$ 제어기는 도립진자의 진자각도 측면에서 $H_{\infty}$ 제어기보다 나은 강건 안정성과 제어 성능을 보인다.

  • PDF

방사형 기저 함수 기반 다항식 뉴럴네트워크 설계 및 최적화 (Design of RBF-based Polynomial Neural Network And Optimization)

  • 김기상;진용하;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1863_1864
    • /
    • 2009
  • 본 연구에서는 복잡한 비선형 모델링 방법인 RBF 뉴럴 네트워크(Radial Basis Function Neural Network)와 PNN(Polynomial Neural Network)을 접목한 새로운 형태의 Radial Basis Function Polynomial Neural Network(RPNN)를 제안한다. RBF 뉴럴 네트워크는 빠른 학습 시간, 일반화 그리고 단순화의 특징으로 비선형 시스템 모델링 등에 적용되고 있으며, PNN은 생성된 노드들 중에서 우수한 결과값을 가진 노드들을 선택함으로써 모델의 근사화 및 일반화에 탁월한 효과를 가진 비선형 모델링 방법이다. 제안된 RPNN모델의 기본적인 구조는 PNN의 형태를 이루고 있으며, 각각의 노드는 RBF 뉴럴 네트워크로 구성하였다. 사용된 RBF 뉴럴 네트워크에서의 커널 함수로는 FCM 클러스터링을 사용하였으며, 각 노드의 후반부는 다항식 구조로 표현하였다. 또한 입력개수, 입력변수, 클러스터의 개수를 PSO알고리즘(Particle Swarm Optimization)을 사용하여 최적화 시켰다. 제안한 모델의 적용 및 유용성을 비교 평가하기 위하여 비선형 데이터를 이용하여 그 우수성을 보인다.

  • PDF

방사형 기저 함수 기반 다항식 뉴럴네트워크 설계 (Design of RBF-based Polynomial Neural Network)

  • 김기상;진용하;오성권;김현기
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.261-263
    • /
    • 2009
  • 본 연구에서는 복잡한 비선형 모델링 방법인 RBF 뉴럴 네트워크(Radial Basis Function Neural Network)와 PNN(Polynomial Neural Network)을 접목한 새로운 형태의 Radial Basis Function Polynomial Neural Network(RPNN)를 제안한다. RBF 뉴럴 네트워크는 빠른 학습 시간, 일반화 그리고 단순화의 특징으로 비선형 시스템 모델링 등에 적용되고 있으며, PNN은 생성된 노드들 중에서 우수한 결과값을 가진 노드들을 선택함으로써 모델의 근사화 및 일반화에 탁월한 효과를 가진 비선형 모델링 방법이다. 제안된 RPNN모델의 기본적인 구조는 PNN의 형태를 이루고 있으며, 각각의 노드는 RBF 뉴럴 네트워크로 구성하였다. 사용된 RBF 뉴럴 네트워크에서의 커널 함수로는 FCM 클러스터링을 사용하였으며, 각 노드의 후반부는 다항식 구조로 표현하였다. 또한 각 노드의 후반부 파라미터들은 최소자승법을 이용하여 최적화 하였다. 제안한 모델의 적용 및 유용성을 비교 평가하기 위하여 비선형 데이터를 이용하여 그 우수성을 보인다.

  • PDF

LINUX 시스템에서 실시간 객체 모델 TMO를 지원하는 실시간 실행 엔진 개발에 대한 연구 (A Study on TMO-supported Real-Time Execution Engine Development on LINUX System)

  • 김연홍;김문희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2001년도 춘계학술발표논문집 (상)
    • /
    • pp.461-464
    • /
    • 2001
  • 최근 컴퓨터관련 모든 분야에서 '실시간(Real-Tine)' 기술이 각광을 받고 있으며 그에 따라 각 분야에 따른 요구사항에 맞춰 변형되어 연구, 응용되고 있다. 그 중에서도 운영체제 레벨에서 실시간 프로세스를 지원할 수 있는 실시간 어플리케이션 분야 연구가 활발해지고 있다. 이러한 실시간 어플리케이션 분야에서 디자인 효율성과 시스템 신뢰도를 높이기 위해 일반화된 형태의 디자인 스타일과 디자인 단계 적시성 서비스 기능 보장 등의 실시간 컴퓨팅 패러다임을 실현하기 위한 연구가 주목받고 있다. 이에 따라 본 논문에서는 최근 인기가 급증하고 있는 LINUX 시스템에서 일반화된 형태의 디자인 스타일을 지원하고 디자인 단계 적시성 서비스를 보장하는 실시간 객체 모델로서 뛰어난 TMO 모델의 실행 엔진을 개발하는 연구에 대해 소개한다.

  • PDF

사전학습 전략과 딥러닝을 활용한 분자의 특성 예측 (Molecular Property Prediction with Deep-learning and Pretraining Strategy)

  • 이승범;김지예;김동우;박재식;안성수
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.63-66
    • /
    • 2022
  • 본 논문에서는 분자의 특성을 정확하게 예측하기 위해 효과적인 사전학습(pretraining) 전략과 트랜스포머(Transformer) 모델을 활용한 방법을 제시한다. 딥러닝을 활용한 분자의 성능을 예측하는 연구는 그동안 레이블이 부족한 분자데이터의 특성에 의해 학습 때 사용된 데이터이외의 분자데이터에 대해 일반화 능력이 떨어지는 어려움을 겪었다. 이 논문에서 제시한 모델은 사전학습(pretraining)을 수행할 때 자기지도학습(self-supervised training)을 사용하여 부족한 레이블에 의한 문제점을 피할 수 있다. 대규모 분자 데이터셋으로부터 학습된 이 모델은 4가지 다운스트림 데이터셋에 대해 모두 우수한 성능을 보여주어 일반화 성능이 뛰어나며 효과적인 분자표현을 얻을 수 있음을 보인다.

  • PDF

금강수계의 사행에 관한 연구 (A Study on the River MEanders in Geum River System.)

  • 안상진;이재동
    • 물과 미래
    • /
    • 제15권1호
    • /
    • pp.33-42
    • /
    • 1982
  • 하천부지의 이용, 개간사업 및 하천을 공학적 측면에서 지속관리해야 된다는 이론이 활발해 짐에 따라 하천형태학의 연구가 주목을 받게 되었다. 그 가운데서도 하천의 사행에 관한 문제는 가장 중요함을 인정받았다. 그러므로 사행특성의 분석에서 많은 이상적인 모델을 사용하였는데 이와 같은 이상적이 모델에 의해 얻어진 자료나 기하학적 변수의 결정방법은 개인의 선호에 의해 달라지는 수가 많다. 본 연구에서는 수로형태의 모델화에 의한 부합리를 제거하기 위하여 통계적인 방법을 사용하였으며 새로운 사행특성 분석방법인 선형 일반화 알고리즘에 의한 수로모델을 사행특성 분석에 사용하였다. 그 결과 곡율의 분산정도가 사행밀도를 판별해주는 지수가 됨을 알았고, 첨연도는 임의수로 내에서 직선수로의 특성을 표시하는 척도가 됨을 알 수 있었다. 특히 선형 일반화 알고리즘에 의한 수로모델은 사행특성을 분석하는데 좋은 모델이 됨을 나타내 주었다.

  • PDF

머신러닝기법을 이용한 WRF-Hydro 하천수 흐름 예측 개선 (Improvement of WRF-Hydro streamflow prediction using Machine Learning Methods)

  • 조경우;김연주
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.115-115
    • /
    • 2019
  • 하천수 흐름예측에 대한 연구는 대부분 WRF-Hydro와 같은 과정기반 모델링 시스템을 이용한다. 과정기반 모델링 시스템은 물리적 현상을 일반화한 수식으로 구성되어있다. 일반화된 수식은 불확실성을 내포하고 있으며 지역적 특성도 반영하지 못한다. 특히 수식에 사용되는 입력자료는 측정값으로 오차가 존재한다. 따라서 과정기반 모델링 시스템 예측결과는 계통오차와 우연오차가 존재한다. 현재 매개변수 보정을 통해 예측결과를 개선하는 방법을 사용하고 있으나 한계가 있다. 본 연구는 이러한 한계를 극복하기 위해 상호보완적인 Data-driven 모델을 구축하여 과정기반 모델링 시스템 결과를 개선하고자 하였다. Data-driven 모델 구축을 위해 머신러닝 기법인 instance-based weighting(IBW)과 support vector regression(SVR)을 사용하였다. 구축된 Data-driven 모델은 한반도 지역 주요 저수지 및 호수의 하천수 흐름예측을 통해 검증하였다. 검증을 위해 과정기반 모델링 시스템으로 WRF-Hydro를 구동하였다. 입력자료는 기상청의 국지수치예측모델자료(LDAPS), HydroSHEDS의 수치표고모델자료(DEM), 국가지리정보원의 저수지 및 호수 연속수치지형도를 사용하였다. 본 연구를 통해 구축된 Data-driven모델은 기존 과정기반 모델링 시스템의 오류수정 한계를 머신러닝을 이용하여 개선할 수 있는 가능성을 제시하였다.

  • PDF

일반화된 허프변환의 성능평가 (Performance Evaluation of the Generalized Hough Transform)

  • 장지영
    • 융합정보논문지
    • /
    • 제7권6호
    • /
    • pp.143-151
    • /
    • 2017
  • 일반화된 허프변환은 임의의 형태의 2차원 모델을 입력영상에서 탐지 및 추출하는데 사용되어지는 효과적인 방법이다. 그러나 일반화된 허프변환의 단점으로 실행시간이 오래 걸린다는 것과 과도한 메모리 사용을 들 수 있다. 그래서 현재까지의 대부분의 연구는 일반화된 허프변환의 실행시간과 메모리 사용량을 줄이는데 집중되어왔다. 그러나 실행시간과 메모리 사용을 줄여서 개선된 알고리즘이 입력 영상에 존재하는 노이즈를 고려할 경우 어떤 성능을 제공하는가는 여전히 불분명하다. 그러므로 본 논문은 일반화된 허프변환의 성능 평가를 위한 새로운 프레임워크를 제안한다. 이를 위해 일반화된 허프변환을 신호탐지 이론의 탐지기로 간주하며 ROC 커브를 사용해서 일반화된 허프변환의 성능을 정의한다. 마지막으로 입력 영상에서의 노이즈를 고려한 정량적인 성능 평가가 가능함을 보인다.

일반화 기법을 이용한 소축척 지도의 자동생성 및 정확도 평가에 관한 연구 (A Study on the Small-scale Map Production using Automatic Map Generalization in a Digital Environment and Accuracy Assessment)

  • 김감래;이호남
    • 한국측량학회지
    • /
    • 제14권1호
    • /
    • pp.27-38
    • /
    • 1996
  • 최근 GIS를 비롯한 각종 지형자료의 응용분야에서 기존의 종이지도가 지니는 제한된 축척 및 정보량 등의 경직성을 탈피한 수치지도의 제작은 시급한 당면 과제로 부각되고 있다. 본 연구에서는 수작업으로 처리되고 있는 편집도의 제작을 자동화하기 위한 방안으로 디지털 환경하에서의 일반화 기법에 대한 연구를 수행하였으며, 주된 연구대상으로는 일반화 알고리즘을 처리 형태별로 개발하여 프로그램화하고 이들 결과를 이용하여 컴퓨터 상에서 특정 지형지물에 대한 소축척지도의 자동제작을 구현하였다. 또한 GIS측면에서의 벡터 데이터로서 동일한 위상구조를 지니기 위한 일반화 전후의 데이터 분석을 토대로 처리형태별 우선 순위의 결정 및 오차량 산정을 실시하여 우리실정에 맞는 일반화의 데이터모델을 분석하였다.

  • PDF