본 논문은 개체의 특성으로 다가의 명목형 반응변수가 반복측정 요인인 시간요인에 의해 주기적으로 반복측정 되었을 때, 자료를 분석하기 위한 모형으로 일반화된 주변 로짓모형을 논의하고 있다. 다가의 반응변수에 영향을 미치는 공변량중 일부가 처치로써 상대적으로 큰 크기의 실험단위에 배정되고 반복측정 요인인 시간요인의 수준들이 또한 처치요인으로 비확률화에 의해 상대적으로 작은 크기의 실험단위에 배정될 때 이를 고려한 모형구축과정과 예상되는 공분산 구조의 가정하에서 모수를 추정하기 위한 방법으로 가중최소제곱 방법을 이용할 수 있음을 제시하고 있다.
본 연구에서는 AR(1) 과정을 따르는 시계열 모형에서 가산적 이상치(Additive Out-lier)가 존재하는 경우, 1차 자기상관계수에 대한 로버스트 추정방법으로 Rupport 와 Carroll (1980)에 의해 회귀모형에서 제안된 L-추정법 형태의 절사최소제곱추정 (PE 추정)방법을 제안하였다. 더불어 X축의 이상치에 대한 비중강하(down-weight)의 방법으로 Mallows의 가중함수를 고려한 유계영향 절사최소제곱 (bounded influence PE, BIPE)추정량을 제안하였으며 모의 실험을 통하여 각 추정량의 효율성을 비교하였다. 모의실험 결과, 다양한 자료의 오염률상에서 일반화 LAD추정치를 예비 추정치로 고려한 BIPE(LAD)-추정량의 효율이 좋은 것으로 나타났다.
이 논문에서는 비선형 자기회귀 과정을 따르는 오차항을 포함한 회귀모형에서 계수추정법의 비교를 다룬다. 비교를 위해 통상적 최소제곱추정량, 일반화 최소제곱추정량, 모수적 회귀오차 수정법, 비모수적 회귀오차 추정법을 비교하였다. 본 논문에서는 또한 비선형 자기회귀모형의 성질을 전형적인 몇가지 비선형자기회귀 모형을 예를 들어 설명한다. 비교연구의 결과 네 가지 추정량 중에 모든 상황에서 최선인 추정량은 존재하지 않았으나 비모수 회귀오차 수정 방법이 일반적으로 우수한 성능을 보임을 알 수 있다.
이중추출법은 모집단 정보가 충분하지 않아 층화 추출법을 사용할 때 정확한 층화 정보가 없는 경우에 흔히 사용하는 표본추출법이다. 특히 최근에는 이중추출법을 위해 1차 조사에서 얻어진 보조 정보를 이용하여 추정의 정확성을 향상시키는 방법들이 제안되었다. 본 연구에서는 최근 제안된 일반화 ratio-cum-product 추정량에서 사용하는 가중치를 이상점 처리를 위한 가중치 보정에 맞도록 보정하여 추정의 정밀성을 향상시키는 방법을 제안하였다. 모의실험을 통하여 본 연구에서 제안한 방법과 기존의 이상점 가중치 보정법의 성능을 비교하였으며 사례 분석을 통하여 제안된 방법의 우수성을 확인하였다.
미세먼지 문제는 최근 우리나라 국민의 최대 관심사로 부상되었고 정부 및 지방자치단체에서도 상당한 노력을 기울이고 있다. 그간 미세먼지와 관련하여 다수의 학술적 연구가 진행되어왔지만 경제 분야의 연구는 상대적으로 미흡하였다. 본 연구에서는 미세먼지가 개별 주식에 어떠한 영향을 끼치는지에 대하여 빅데이터 분석을 통해 알아보고자 한다. 2013년부터 2017년까지 총 5개년을 대상으로 PM10농도 미세먼지 데이터와 미세먼지 테마주 데이터와의 관계를 분석하였다. 연구방법으로는 일반화최소제곱법을 사용한 선형회귀모형을 사용하여 회귀분석을 실시하였다. 연구 결과 미세먼지 농도가 전일에 비해서 증가했을 때 미세먼지 테마주의 주가가 상승하는 것으로 나타났다. 그리고, 2013년부터 2017년까지 주가변동 분석결과 회귀계수 값이 큰 기업은 매년 달라졌다. 5개년 동안 제일 큰 반응을 보인 기업은 오공, 웰크론, 동성제약, 삼일제약, 모나리자 순이었다. 그 중 연도별로 반복적으로 등장하는 기업으로는 모나리자가 2014년, 2015년, 2017년에, 삼일제약은 2015년, 2016년, 2017년에, 웰크론은 2016년, 2017년에 반복적으로 회귀계수가 크게 나타났으며 해당 기업은 미세먼지 농도에 주가가 민감하게 반응하는 기업이라고 사료된다. 향후 PM2.5 측정 데이터가 충분히 쌓이게 된다면 PM2.5의 농도를 독립변수로 한 연구와 비교·분석하는 것도 의미가 있을 것이다. 본 연구에서는 미세먼지 농도만을 독립변수로 하였는데 설명력을 높일 수 있는 변수를 추가한다면 좀 더 의미있는 연구결과를 기대할 수 있을 것이다.
Shack-Hartmann 센서로부터 얻어진 기울기 정보로부터 파면을 재구성하고 분석하기 위해서는 각각의 점 영상에 대한 위상 구배로부터 파면의 위상을 재구성할 수 있는 수학적인 알고리즘이 필요하다. 파면의 위상을 재구성하기 위한 알고리즘은 Hudgin, Fried, Southwell이 제시한 세 가지 방법에 대한 연구결과가 가장 많이 알려져 있다. 본 연구에서는 CCD 카메라로부터 전송된 디지털 영상에서 각각의 점 영상의 중심점을 추출하여 점 영상의 이동정보로부터 수평과 수직방향의 기울기를 계산하고, 이를 바탕으로 최소제곱법(least-square fitting)을 사용하여 위상을 재구성하였다. 파면의 기울기 정보로부터 파면을 재구성하기 위해 기존의 이론을 바탕으로 행렬계산법을 사용하여 각각의 경우를 일반화하였고, 위상의 복구와 파면의 보정에 따른 해석적인 오차의 관계를 논의하였다. (중략)
고정효과가 하나인 이원혼합모형에서의 고정효과 유의성검정에 대한 검정력 분석을 고려한다. 고정효과 수준간의 차이를 검정하는데 사용되는 일반화 최소제곱 F 통계량을 헨더슨의 방법 III, 사전추측값이 1인 MINQUE 추정량, 최우추정법, 제한적 최우 추정법을 이용하여 구하고 이 검정 통계량들의 검정력을 모의실험을 통하여 알아본다. 모의실험의 결과는 결론적으로 검정력의 측면에서 살펴본 효율성은 4가지 추정량 모두 대체적으로 비슷한 것으로 판명되었다.
Bradley & Stewart(1991)에서 인용하고 있는 예에 대해서 행간, 열간 정보를 회복하여 이것을 이용하고 블록내 분석결과와 결합하는 방법을 생각해 볼 수 있다. 이것은 행효과와 열효과를 다같이 확률효과(random effects)로 간주하여 일반화 최소제곱법(Generalized least squares method)에 의해서 해를 구하는 것과 동일한 것이다. 이것이 Paik(1986)에서 논의되고 있다. 이 방법은 어떤 행-열 계획(Row-column design)에도 적용된다. 따라서 격자방격(格子方格, Lattice square)에도 그대로 적용된다. 그런데 이와 같은 방법은 보통 불완비 블록계획(incomplete block designs)에서의 방법을 확대 적용하여 얻을 수 있다. 이러한 블록실험에 대한 SAS/IML을 이용한 분석법은 백운봉(1990a,1990b)에 의해서 제안된 바 있다. 그러나 이것이 개선될 필요가 있었고, 이 개선된 방법을 확대 적용한 것이 본 논문이다. 블록실험에 대한 개선된 방법은 본 논문 말미에 부록으로 제공 되어 있다.
본 연구에서는 GPS 측량으로 얻어지는 자료들을 이용하여 철도선형을 복원하고자할 경우 이들 자료로부터 불필요한 부분을 제거하고 위치정확도를 확보할 수 있는 방법을 찾고자 일반화 방법 중 4개의 알고리즘을 적용하여 분석하였다. 그 결과 단순화 알고리즘을 평가하기 위한 방법으로 선형요소의 복잡성은 실질적이지 못했으며, 선형요소의 위치 변위를 줄일 수 있는 방법으로 벡터 변위량과 면적생성량을 이용하는 방법이 효과적임을 알 수 있었으며, 이때 선형 단순화 알고리즘으로는 Douglas-Peucker방법임을 알 수 있었다. 또한 이 알고리즘을 이용하여 측정된 데이터를 단순화 한 후 철도 선형제원을 복원한 결과가 단순화를 실시하기전의 복원 결과보다 양호한 결과를 얻을 수 있었다.
국내 영화 산업 매출은 매년 증가하고 있다. 극장은 영화의 1차 판매 경로이며, 극장을 이용하는 관객 수는 부가판권에 영향을 준다. 따라서 극장을 이용하는 관객의 수는 영화 산업 매출에 직결되는 중요한 요소이다. 본 논문에서 특정일의 관객 수를 예측하기 위하여 다중선형회귀모형과 Bass 모형을 결합한 Hybrid 모형을 고려한다. 두 모형을 결합함으로써 회귀분석의 예측값을 Bass 모형의 예측값으로 보정하였다. 분석에는 개봉일이 모두 다른 세 영화를 이용하였다. All subset regression 방법을 이용해 모든 가능한 조합을 생성하고 5중 교차검증(5-fold cross validation)을 통해 5번 모형을 추정한다. 이 때 제곱근평균오차가 가장 작은 모형으로 예측값을 구한 뒤 Bass 모형의 예측값과 결합해 최종 예측값을 구하게 된다. 과거데이터가 존재할수록 Bass 모형의 가중치는 증가하면서 예측값에 보정효과를 준다는 것을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.