연관규칙 마이닝은 트랜잭션 데이터를 이루고 있는 항목간의 잠재적인 의존관계를 발견하는 데이터 마이닝의 한 분야이다. 정량 연관규칙이란 부류적 속성과 정량적 속성을 모두 포함한 연관규칙이다. 정량 연관규칙 마아닝을 위한 퍼지 기술의 응용, 정량 연관규칙 마이닝을 위한 일반화된 연관규칙 마이닝, 사용자의 관심도를 반영한 중요도 가중치가 있는 연관규칙 마이닝 등에 대한 연구가 이루어져 왔다. 이 논문에서는 중요도 가중치가 있는 일반화된 퍼지 정량 연관규칙 마이닝의 새로운 방법을 제안한다. 이 방법은 부류적 속성의 퍼지 개념 계층과 정량적 속성의 퍼지 언어항 일반화 계층을 일반화된 추출하기 위해 이용한다. 이것은 속성들의 수준별 일반화 계층과 속성의 중요도 가중치를 이용함으로써 사용자가 보다 융통성 있는 연관규칙을 마이닝할 수 있게 해준다.
데이터로부터 숨겨진 패턴을 추출하는 데이터마이닝 기법 중에서 연관규칙은 대용량의 데이터베이스에서 단위 트랜잭션 당 동시에 발생할 확률이 높은 항목들의 유형을 발견하는 기법이다. 연관규칙 탐사에서 개념계층(taxonomy)을 사용하여 보다 포괄적인 의미를 갖는 규칙을 찾아내는 연구가 일반화된 연관규칙이며 이를 통해 일반화 이전에는 간과될 수 있는 중요한 규칙을 발견할 수 있다. 일반화된 연관규칙에 관한 기존의 접근방법은 후보항목집합의 각 항목에 대한 개념계층상의 모든 조상들을 트랜잭션에 추가한 후 확장된 트랜잭션에 대해 지지도를 계산하는 방법이며. 이렇게 되면 연관규칙의 단점중의 하나인 계산량 문제가 더욱 두드러지게 된다. 이에 본 연구에서는 모든 개념계층 레벨이 아닌, 사용자가 관심 있는 레벨로 제한된 환경에서 연관규칙 탐사를 수행하여 규칙생성의 복잡도를 줄이는 시스템을 구현하였다. 그러나 모든 항목을 한 레벨로 일반화하는데는 무리가 따르기 때문에 관심있는 항목의 경우 일반화 레벨을 따로 명시할 수 있도록 하여 사용자가 원하는 규칙을 발견하도록 하였다.
연관 규칙 마이닝 과정에 참조되는 일반 개념 계층은 개념간의 명확한 관계만을 표현한다. 실제로는 개념 사이의 관계가 애매한 경우가 많다. 이 논문에서는 개념간의 애매한 관계까지 반영할 수 있는 퍼지 개념 계층을 이용하여 일반화된 연관 규칙을 마이닝하는 방법을 제안한다. 퍼지 개념 계층에서의 하위 개념을 상위 개념으로 적절하게 반영하는 방법과 마이닝된 연관 규칙에서 중복되는 규칙의 가지치기(pruning)에 사용되는 측도를 소개한다. 또한 퍼지 개념 계층을 이용한 일반화된 연관 규칙 마이닝 방법의 응용성을 보이기 위해 실험 과정과 결과를 보인다.
산업계 전반에 걸친 오랜 정보시스템 운용의 결과로 대용량의 데이타들이 축적되고 있다. 이러한 데이타로부터 유용한 지식을 추출하기 위해 여러 가지 데이타 마이닝 기법들이 연구되어왔다. 특히 데이타 웨어하우스의 등장은 이러한 데이타 마이닝에 있어 필요한 데이타 제공 환경을 제공해 주고 있다. 그러나 전문가의 적절한 판단과 해석을 거치지 않은 데이타 마이닝의 결과는 당연한 사실이거나, 사실과 다른 가짜이거나 또는 관련성이 없는(trivial, spurious and irrelevant) 내용만 무수히 쏟아낼 수 있다. 그러므로 데이타 마이닝의 결과가 비록 통계적 유의성을 가진다 하더라고 그 정당성과 유용성에 대한 검증과정과 방법론의 정립이 필요하다. 데이타 마이닝의 가장 어려운 점은 귀납적 오류를 없애기 위해 사람이 직접 그 결과를 해석하고 판단하며 아울러 새로운 탐색 방향을 제시해야 한다는 것이다. 본 논문의 목적은 이러한 데이타 마이닝에서 추출된 결과를 검증하고 아울러 새로운 지식 탐색 방향을 제시하는 방법론을 정립하는데 있다. 본 논문에서는 데이타 마이닝 기법 중 연관규칙탐사로 얻어진 결과를 설명가능성 여부의 판단을 통해 검증하는 기법을 제안하며, 이를 통해 얻어진 검증된 지식을 토대로 일반화를 통한 새로운 가설을 생성하여 데이타 웨어하우스로부터 연관규칙을 검증하는 일련의 아키텍쳐(architecture)를 제시하고자 한다. 먼저 데이타 마이닝 결과에 대한 설명의 필요성을 제시하고, 데이타 웨어하우스와 데이타 마이닝 기법들에 대한 간략한 설명과 연관규칙탐사에 대한 정의 및 방법을 보이고, 대상 영역에 대한 데이타 웨어하우스의 스키마를 보였다. 다음으로 도메인 지식(domain knowledge)과 연관규칙탐사를 통해 얻어진 결과를 표현하기 위한 지식표현 방법으로 Relational predicate Logic을 제안하였다. 연관규칙탐사로 얻어진 결과를 설명하기 위한 방법으로는 연관규칙탐사로 얻어진 연관규칙에 대해 Relational Predicate Logic으로 표현된 도메인 지식으로서 설명됨을 보이게 한다. 또한 이러한 설명(explanation)을 토대로 검증된 지식을 일반화하여 새로운 가설을 연역적으로 생성하고 이를 연관규칙탐사론 통해 검증한 후 새로운 지식을 얻는 반복적인 Explanation-based Data Mining Architecture를 제시하였다. 본 연구의 의의로는 데이타 마이닝을 통한 귀납적 지식생성에 있어 귀납적 오류의 발생을 고메인 지식을 통해 설명가능 함을 보임으로 검증하고 아울러 이러한 설명을 통해 연역적으로 새로운 가설지식을 생성시켜 이를 가설검증방식으로 검증함으로써 귀납적 접근과 연역적 접근의 통합 데이타 마이닝 접근을 제시하였다는데 있다.
산업계 전반에 걸친 오랜 정보시스템 운용의 결과로 대용량의 데이터들이 축적되고 있다. 이러한 데이터로부터 유용한 지식을 추출하기 위해 여러 가지 데이터 마이닝 기법들이 연구되어왔다. 특히 데이터 웨어하우스의 등장은 이러한 데이터 마이닝에 있어 필요한 데이터 제공 환경을 제공해 주고 있다. 그러나 전문가의 적절한 판단과 해석을 거치지 않은 데이터 마이닝의 결과는 당연한 사실이거나, 사실과 다른 가짜이거나 또는 관련성 없는(trivial, spurious and irrelevant)내용만 무수히 쏟아낼 수 있다. 그러므로 데이터 마이닝의 결과가 비록 통계적 유의성을 가진다 하더라도 그 정당성과 유용성에 대한 검증과정과 방법론의 정립이 필요하다. 데이터 마이닝의 가장 어려운 점은 귀납적 오류를 없애기 위해 사람이 직접 그 결과를 해석하고 판단하며 아울러 새로운 탐색 방향을 제시해야 한다는 것이다. 본 논문에서는 데이터 마이닝 기법 중 연관규칙탐사로 얻어진 결과를 설명가능성 여부의 판단을 통해 검증하는 기법을 제안하며, 이를 통해 얻어진 검증된 지식을 토대로 일반화를 통한 새로운 가설을 생성하여 데이터 웨어하우스로부터 연관규칙을 검증하는 일련의 아텍쳐(architecture)를 제시하고다 한다. 먼저 데이터 마이닝 결과에 대한 설명의 필요성을 제시하고, 데이터 웨어하우스와 데이터 마이닝 기법들에 대한 간략한 설명과 연관규칙탐사에 대한 정의 및 방법을 보이고, 대상 영역에 대한 데이터 웨어하우스으 스키마를 보였다. 다음으로 도메인 지식(domain knowledge)과 연관규칙탐사를 통해 얻어진 결과를 표현하기위한 지식표현 방법으로 Relational Predicate Logic을 제안하였다. 연관규칙탐사로 얻어진 결과를 설명하기 위한 방법으로는 연관규칙탐사로 얻어진 연관규칙에 대해 Relational Predicate Logic으로 표현된 도메인 지식으로서 설명됨을 보이게 한다. 또한 이러한 설명(explanation)을 토대로 검증된 지식을 일반화하여 새로운 가설을 연역적으로 생성하고 이를 연관규칙탐사를 통해 검증한 후 새로운 지식을 얻는 반복적인 Explanation-based Data Mining Architecture를 제시하였다. 본 연구의 의의로는 데이터 마이닝을 통한 귀납적 지식생성에 있어 귀납적 오류의 발생을 도메인 지식을 통해 설명가능 함을 보임으로 검증하고 아울러 이러한 설명을 통해 연역적으로 새로운 가설지식을 생성시켜 이를 가설검증방식으로 검증함으로써 귀납적 접근과 연역적 접근의 통합 데이터 마이닝 접근을 제시하였다는데 있다.
신경망을 이용해 고객집단을 분류하고 고객의 특성에 따라 세분화된 고객들에 대해 다단계 연관규칙을 적용해서 고객의 상품 구매패턴을 찾아 줌으로써 마케팅 전략 결정을 지원하는 구매패턴분류 시스템을 설계한다. 고객분류를 위한 신경망 시스템은 다층 퍼셉트론에 역전파 알고리즘을 이용한다. 주소, 구매금액, 구매횟수, 고객 구분, 상긴 등과 같은 고객정보를 입력층에 입력변수로 지정하고, 이에 따른 우량/일반고객을 출력변수로 지정한 후 신경망을 학습시키면, 실제의 우량/일반의 간과 예측되는 우량/일반의 값의 차이론 최소화시키면서 모형을 형성시켜 나가게 된다. 구매패턴 분류 시스템은 다단계 연관규칙을 이용한다. 고객분류 서브시스템을 통해 고객집단이 세분화되면 각각의 고객집단에 대해 TID와 품목 트랜잭션을 입력으로 cumulate 알고리즘과 개념계층을 이용해 일반화 과정을 수행하면서 빈발 항목을 찾게 되고 이론 근거로 항목간의 연관규칙을 찾아내게 된다.
산업계 전반에 걸친 오랜 정보시스템 운용의 결과로 대용량의 데이터들이 축적되고 있다. 이러한 데이터로부터 유용한 지식을 추출하기 위해 여러 가지 데이터마이닝 기법들이 연구되어 왔다. 특히 데이터웨어하우스의 등장은 이러한 데이터마이닝에 있어 필요한 데이터 제공 환경을 주고 있다. 그러나 전문가의 적절한 판단과 해석을 거치지 않은 데이터마이닝의 결과는 당연한 사실이거나, 사실과 다른 가짜이거나 또한 관련성 없는(Trivial, Spurious and Irrelevant) 내용만 무수히 쏟아낼 수 있다. 그러므로 데이터마이닝의 결과가 비록 통계적 유의성을 가진다 하더라고 그 정당성과 유용성에 대한 검증과정과 방법론의 정립이 필요하다. 데이터마이닝의 가장 어려운 점은 귀납적 오류를 없애기 위해 사람이 직접 그 결과를 해석하고 판단하며 아울러 새로운 탐색 방향을 제시해야 한다는 것이다. 본 논문의 목적인 이러한 데이터마이닝에서 추출된 결과를 검증하고 아울러 새로운 지식 탐색 방향을 제시하는 방법론을 정립하는데 있다. 본 논문에서는 데이터마이닝 기법 중 연관규칙탐사(Associations)로 얻어진 결과를 설명가능성 여부의 판단을 통해 검증하는 기법을 제안하였고, 이를 위해 도메인 지식(Domain Knowledge)과 연관규칙탐사를 통해 얻어진 결과를 표현하기 위한 지식표현방법으로 관계형 술어논리(RPL : Relational Predicate Logic)를 개발하였다. 연관규칙탐사로 얻어진 결과를 설명하기 위한 방법으로는 연관규칙탐사로 얻어진 연관규칙에 대한 RPL로 표현된 도메인 지식으로서 설명됨을 보이게 한다. 또한 이러한 설명(Explanation)을 토대로 검증된 지식을 일반화하여 새로운 가설을 연역적으로 생성하고 이를 연관규칙탐사를 통해 검증한 후 새로운 지식을 얻는 설명기반 데이터마이닝 구조(Explanation-based Data Mining Architecture)를 제시하였다.
교통사고의 원인을 규명하고 미래의 사고를 방지하기 위한 노력의 일환으로 데이터 마이닝 기법을 이용한 교통 데이터 분석의 연구가 이루어지고 있다. 하지만 기존의 교통 데이터를 이용한 마이닝 연구들은 학습된 결과를 사람이 이해하기 어려워 분석에 많은 노력이 필요하다는 문제가 있었다. 본 논문에서는 많은 속성들로 표현된 교통사고 데이터로부터 유용한 패턴을 발견하기 위해 규칙 학습 기반의 데이터 마이닝 기법인 연관규칙 학습기법과 서브그룹 발견기법을 적용하였다. 연관규칙 학습기법은 비지도 학습 기법의 하나로 데이터 내에서 동시에 많이 등장하는 아이템(item)들을 찾아 규칙의 형태로 가공해 주며, 서브그룹 발견기법은 사용자가 지정한 대상 속성이 결론부에 나타나는 규칙을 학습하는 지도학습 기반 기법으로 일반성과 흥미도가 높은 규칙을 학습한다. 규칙 학습 시 사용자의 의도를 반영하기 위해서는 하나 이상의 관심 속성들을 조합한 합성 속성을 만들어 규칙을 학습할 수 있다. 규칙이 도출되고 나면 후처리 과정을 통해 중복된 규칙을 제거하고 유사한 규칙을 일반화하여 규칙들을 더 단순하고 이해하기 쉬운 형태로 가공한다. 교통사고 데이터를 대상으로 두 기법을 적용한 결과 대상 속성을 지정하지 않고 연관규칙 학습기법을 적용하는 경우 사용자가 쉽게 알기 어려운 속성 사이의 숨겨진 관계를 발견할 수 있었으며, 대상 속성을 지정하여 연관규칙 학습기법과 서브그룹 발견기법을 적용하는 경우 파라미터 조정에 많은 노력을 기울여야 하는 연관규칙 학습기법에 비해 서브그룹 발견기법이 흥미로운 규칙들을 더 쉽게 찾을 수 있음을 확인하였다.
정보산업의 급속한 발전은 축적되어 있는 대규모의 데이터로부터 보다 가치 있는 정보 생성 및 정확한 데이터 분석 능력을 요구하고 있다. 특히 데이터마이닝 기법을 이용하여 주어진 데이터간의 연관관계를 도출하고, 얻어진 패턴을 바탕으로 미래를 예측하는 방법은 주목을 받고 있다. 이 연구에서는 속성중심 귀납방법과 분류규칙을 통합한 일반화 기반의 분류기법을 제안하였고, 간결한 모델의 구축 및 규칙 추출을 수행하였다. 또한 일반화 기반 분류 예측시스템에 산불데이터를 적용하여, 기상 데이터와 산불발생 사이의 관련성을 분석하고 효율적인 예측을 수행하였다. 이 연구에서 제시한 기법은 반복적으로 발생하는 자연재해에 대한 분석 및 예측, 에너지의 수요량 예측등과 같이 실생활의 중요한 부분들에 다양하게 응용할 수 있다.
인터넷이 일반화되면서, 컴퓨터 시스템을 침입으로부터 효과적이면서 종합적으로 보호하기 위해 침입 탐지 시스템이 필요하게 되었다. 본 연구에서는 이상행위 탐지 기법을 이용한 침입 탐지 시스템을 구축할 때, 수행하는 정상행위 프로파일링 과정에서 발생하는 자기설명모순이 존재함을 제시하고 이를 제어할 수 있는 침입 탐지 방안을 제안하였다. 또한, 연관규칙을 적용한 프로파일링 과정의 결과는, 많은 정상행위 패턴이 생성될 수 있기 때문에, 이를 위해 군집화를 통한 효과적인 적용방안을 제시한다. 마지막으로, 사용자의 행위 패턴에 대해 군집화된 정상행위 패턴 데이터베이스로부터 이상행위 여부를 판단할 수 있는 유사도 함수를 제안하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.