• Title/Summary/Keyword: 일반화된 선형모형

Search Result 150, Processing Time 0.042 seconds

감마 일반화 선형 모형에서의 산포 모수 추정량에 대한 효율성 연구 (Comparing the efficiency of dispersion parameter estimators in gamma generalized linear models)

  • 조성일;이우주
    • 응용통계연구
    • /
    • 제30권1호
    • /
    • pp.95-102
    • /
    • 2017
  • 감마 일반화 선형모형은 포아송 분포 또는 이항 분포에 기반한 일반화 선형모형에 비해 적은 관심을 받아왔다. 따라서 감마 일반화 선형모형에서는 오래전에 개발된 통계적인 기법이 아직도 사용되고 있으며, 특히 산포 모수에 대해서는 근사 추정치가 여전히 사용되고 있다. 본 논문에서는 감마 일반화 선형 모형의 산포 모수에 대해 다양한 추정량들을 알아보고 수치 연구를 통해 그들의 효율성을 비교한다. 수치 실험의 결과 최대 가능도 추정량과 Cox-Reid의 수정된 최대 가능도 추정량이 기존의 근사 추정량에 비해 좋은 성능을 보임을 확인하였다.

공간적 상관관계가 존재하는 이산형 자료를 위한 일반화된 공간선형 모형 개관 (Review of Spatial Linear Mixed Models for Non-Gaussian Outcomes)

  • 박진철
    • 응용통계연구
    • /
    • 제28권2호
    • /
    • pp.353-360
    • /
    • 2015
  • 공간적으로 관측되는 연속형 자료를 분석하는 모형으로 공간적 상관관계를 고려한 다양한 정규모형이 지난 수십 년간 제안되었다. 그 중에서 공간효과를 랜덤효과로 모형화하는 공간선형모형(Spatial Linear Mixed Model; SLMM)이 가장 널리 활용되는 모형 중 하나일 것이다. 연결함수(link function)을 사용하면 SLMM을 비정규 데이터도 적용할 수 있는 일반화된 공간선형모형(Spatial Generalized Linear Mixed Model; SGLMM)으로 자연스럽게 확장할 수 있다. 이 논문에서는 가장 널리 활용되는 SGLMM을 알아보고 실제 데이터 적용사례를 R 패키지를 활용하여 제시하고자 한다.

다구찌 실험분석에 있어서 일반화선형모형 대 자료변환 (Generalized linear models versus data transformation for the analysis of taguchi experiment)

  • 이영조
    • 응용통계연구
    • /
    • 제6권2호
    • /
    • pp.253-263
    • /
    • 1993
  • 최근 다구찌 실험에 대한 관심이 고조되어 일반화 선형모형에서 평균과 분산의 동시모형화가 연구되고 있다. 하나의 자료 변환만으로는 자료분석에 필요한 모든 조건들을 만족시킬 수 없기 때문에 다구찌 품질실험의 자료들을 일반화 선형모형으로 분석하는 것이 바람직하다. 본 논문에서는 이 자료변환법과 일반선형모형을 이용한 분석법을 소개, 비교하고 일반화 선형모형을 다구찌 자료에 적용할 수 있는 GLIM 프로그램을 제시한다.

  • PDF

비선형 평균 일반화 이분산 자기회귀모형의 추정 (Estimation of nonlinear GARCH-M model)

  • 심주용;이장택
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권5호
    • /
    • pp.831-839
    • /
    • 2010
  • 최소제곱 서포트벡터기계는 비선형회귀분석과 분류에 널리 쓰이는 커널기법이다. 본 논문에서는 금융시계열자료의 평균 및 변동성을 추정하기 위하여 평균의 추정 방법으로는 가중최소제곱 서포트벡터기계, 변동성의 추정 방법으로는 최소제곱 서포트벡터기계를 사용하는 비선형 평균 일반화 이분산 자기회귀모형을 제안한다. 제안된 모형은 선형 일반화 이분산 자기회귀모형 및 선형 평균 일반화 이분산 자기회귀모형보다 더 나은 추정 능력을 가진다는 것을 실제자료의 추정을 통하여 보였다.

감마 일반화 선형 모형에서의 가능도비 검정과 F-검정 비교연구 (Comparing the performance of likelihood ratio test and F-test for gamma generalized linear models)

  • 조성일;한정섭;이우주
    • 응용통계연구
    • /
    • 제31권4호
    • /
    • pp.475-484
    • /
    • 2018
  • 감마 일반화 선형모형은 음이 아니며 치우침이 있는 반응변수에 유용한 모형으로 알려져 있다. 그러나 포아송 분포 또는 이항 분포에 기반한 일반화 선형모형에 비해 적은 관심을 받아왔다. 특히, 회귀계수의 유의성 검정에 대해서는 연구가 면밀히 되어 있지 않다. 본 논문에서는 감마 일반화 선형 모형의 검정에 대해 다양한 통계량들을 알아보고 수치 연구를 통해 그들의 성능을 비교한다. 수치 실험의 결과 부분 이탈도 검정 방법의 문제점이 나타났으며, 가능도비 검정 방법과 F-검정 방법이 좋은 성능을 보임을 확인하였다.

일반화 선형모형을 이용한 냉음극 형광램프의 휘도 측정 시 온도 및 습도의 영향에 대한 연구

  • 윤양기;길영수
    • 한국신뢰성학회:학술대회논문집
    • /
    • 한국신뢰성학회 2005년도 학술발표대회 논문집
    • /
    • pp.281-286
    • /
    • 2005
  • 휘도(Luminance)는 냉음극 형광램프(Cold Cathode Fluorescent Lamp : CCFL)의 신뢰성을 평가하는데 있어 중요한 항목으로 사용되고 있다. 본 연구에서는 휘도 측정시 주위 온도 및 습도에 따라 측정감이 어떻게 변화하는가를 일반화 선형모형(Generalize Linear Model)을 이용하여 알아보고, 측정시의 환경조건 및 측정 오차에 대한 지침을 제시할 수 있게 된다.

  • PDF

일반화된 선형 혼합 모형(GENERALIZED LINEAR MIXED MODEL: GLMM)에 관한 최근의 연구 동향 (A Study for Recent Development of Generalized Linear Mixed Model)

  • 이준영
    • 응용통계연구
    • /
    • 제13권2호
    • /
    • pp.541-562
    • /
    • 2000
  • 일반화된 선형 혼합 모형(GLMM)은 자료가 계수의 형태로 나타나는 범주형 자료의 경우, 혹은 집락의 형태나 과산포된 비정규 자료, 또는 비선형 모형에 따르는 자료를 다루기 위한 모형 설정에 사용된다. 본 연구에서는 이에 대한 개요와 더불어, 이 모형의 적합을 위해 제시된 통계적 기법들중 의사가능도(quasi-likelihood: QL)를 이용한 추정 방법 및 Monte-Carlo 기법을 이용한 추정 방법들에 대해 조사하였다. 또한 GLMM에 대한 현재의 연구 방향 및 앞으로의 연구 가능 주제들에 대해서도 언급하였다.

  • PDF

분포함수를 기초로 일반화가중선형모형 (Generalized Weighted Linear Models Based on Distribution Functions - A Frequentist Perspective)

  • 여인권
    • 응용통계연구
    • /
    • 제17권3호
    • /
    • pp.489-498
    • /
    • 2004
  • 이 논문에서는 일반화가중선형모형이라는 새로운 형태의 선형모형을 제시한다. 일반화가중선형모형은 설명변수와 반응변수의 관계를 설명분포함수의 선형결합이 반응변수의 평균에 대한 연결분포함수를 통해 모형화 되는 형태를 가지는 것으로 가정한다. 이모형은 일반화선형 모형에서 연결함수를 선택할 때 발생할 수 있는 모수공간과 선형 예측값의 공간이 일치하지 않을 수 있다는 문제가 발생하지 않고 모수에 대한 해석이 용이하다는 장점이 있다. 이 논문에서는 설명분포함수와 연결분포함수를 선택하는데 있어 발생할 수 있는 문제와 해결책에 대해 알아본다. 또한 모형에 포함되어 있는 모수를 추정하는데 고려해야 할 주의 사항과 이 사항들을 고려한 최대가능도추정법과 재표집 방법을 이용한 구간추정과 가설검정에 대해 알아본다.

로지스틱 임의선형 혼합모형의 최대우도 추정법 (Maximum likelihood estimation of Logistic random effects model)

  • 김민아;경민정
    • 응용통계연구
    • /
    • 제30권6호
    • /
    • pp.957-981
    • /
    • 2017
  • 관측되지 않는 효과 또는 고정효과로 설명할 수 없는 분산 구조가 포함되어 정확한 모수 추정이 어려운 경우 체계적인 분석을 위해 일반화 선형 모형은 임의효과가 포함된 일반화 선형 혼합 모형으로 확장되었다. 본 연구에서는 일반화 선형 모형 중에서도 이분적인 반응변수를 다루는 로지스틱 회귀모형에 임의효과를 포함한 최대 우도 추정 방법을 설명한다. 그중에서도 라플라스 근사법, 가우스-에르미트 구적법, 적응 가우스-에르미트 구적법 그리고 유사가능도 우도에 대한 최대우도 추정법을 자세히 알아본다. 또한 제안한 방법을 사용하여 한국 복지 패널 데이터에서 정신건강과 생활만족도가 자원봉사활동에 미치는 영향에 대해 분석한다.