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A Ridge-type Estimator For Generalized
Linear Models

Byoung Jin Ahn?

ABSTRACT

It is known that collinearity among the explanatory variables in generalized
linear models inflates the variance of maximum likelihood estimators. A ridge-type
estimator is presented using penalized likelihood. A method for choosing a
shrinkage parameter is discussed and this method is based on a

prediction-oriented criterion, which is Mallows’'s Cr statistic in a linear regression
setting.

1. INTRODUCTION

Collinearity has long been recognized as a potential source of problem in the estimation,
computation and interpretation of linear model parameters. As is the case in linear
regression, model fitting via generalized linear models(GLMs) is also sensitive to
collinearities among the explanatory variables in the model. Schaefer(1986) show that
collinearity among explanatory variables in logistic regression inflates the variance of
Maximum Likelihood Estimator(MLE). Mackinnon and Puterman(1989) investigate the
relationship between collinearity in GLMs and standard linear models.

Schaefer et al.(1984) derive a ridge logistic estimator, and show that a ridge logistic
estimator has smaller mean squard error than MLE under certain conditions. Marx and
Smith(1990) present a principle component estimator for GLMs, and show that it can be
useful with the presence of an ill-conditioned information matrix. It is the objective of this
paper to develop and present a ridge-type estimator, as an option to traditional MLE for
GLMs. Both iterative and one-step ridge estimators are developed using penalized likelihood.

There has been a substantial amount of interest in choosing a shrinkage parameter for
ridge regression. This paper also concerns choosing the shrinkage parameter of ridge
estimator for GLMs. In case of MLE, Efron(1986) discusses the general measures of
prediction error which can be applied to GLMs. We adopt same idea to ridge estimator and
obtain a prediction-oriented criterion, which can be used in the choice of shrinkage
parameter for GLMs.

2. RIDGE ESTIMATOR
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We suppose that the independent observations y; are members of a one parameter
exponential family with density functions

flyi0,98)=expl(y0i-b(8))a(@)+clyi,$)], i=12,...n 2.1

where b() and c(.) are known functions and the value of a($) is, initially at least, assumed
to be known. The mean and variance of Y; are given by

E(Yi)=b(8;) =4,
Var(Y:) =a($)b(6:) =v..

Here a dot denotes differentiation.
Assume that the natural parameters ©; are expressed as linear combinations of known
p-dimensional covariate vectors xi and an unknown p-dimensional parameter vector 8,

0,=x;"8, i=12,...n.

The GLMs used in this paper are the models which have, so called, canonical
links.(section 2.2.4 of McCullagh and Nelder, 1983).

Hoerl and Kennard(1970) derive the ridge estimator motivated by the tendency of least
squares estimators to be too large. So, we may define the penalized likelihood as follows:

Li(B) =Zlogﬂy,»;e.-,¢)—kq(a), 22

where q(8)=8’8/2 is a penalty function and k is a nonnegative constant which controls the
amount of penalty. Green(1987) examines penalized likelihood estimation in the context of
general regression problems, characterized as probability models with composite likelihood
functions. The Maximum Penalized Likelihood Estimator (MPLE) is the solution of

Lk (8)=0.
Applying the Newton-Rapson procedure with Fisher's scoring technique,a
sequence of approximations, {81}, are generated according to

B = Ber (X WeX+kD X (y- BeVald)-k B

=(x WXx+k)'x W.z. 23)

where  W.=diag{ vi/a*(®)}; and Z,=X B+ W, (y- Te)a(@). In linear regression,
MPLE is B=(X'X+k*I)"'X’y without iteration, if we take k=k™*/p.

We can obtain one-step ridge estimator B of B using the MLE B of 8 as an initial
value
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B'=(X" WX+kD)'(X WX)B, (2.4)

where W is the estimated W using B. This estimator is appealing since it is easy to
obtain in practice using output from existing generalized linear model packages. In

case of logistic regression, 8! in (2.4) is equivalent to ridge logistic estimator derived
by Schaefer et al.(1984).

If we adopt q(B8)=8(X WX)8/2 as a penalty function, the MPLE of 8 is a Stein-type
estimator

Be=CX WX)'x W.z,

where C=(1+k)-1 and 0<C<1. (Stein, 1960)

3. A PREDICTION-ORIENTED CRITERION

Efron(1986) discusses the accuracy of the model for predicting future observation, when
MLE is used. For the choice of Shrinkage parameter k, same idea can be adopted to ridge
estimator.

The (scaled) deviance play a central role to assessment of goodness—-of-fit, and it can be
expressed as

D(y, #)=2 2ilog fyiyi®)f(yitti$), (3.1)

where #; is the estimated mean at x; using B and flyiui$) is the probobility

function of yi. If we denote the estimate of the natural parameter by &=A( %), the
deviance can be written

D(y,ﬁ)=2;[h(y.-)y,»-h( 1)yi-b(h(y))+b(h( 1)) a($). (32)

The deviance in (3.2) tends to underestimate the true prediction error because the data
have been used twice, both to fit the model and to check its accuracy. The true deviance

D* of a prediction vector # is defined to be

D* =E{(D(ys, i) . . (33)
=2 Z[E,(h(yf)y,) ~h( uui- Ef(b(h(ys))) +b(h( 1)) Va(9).

Here  yr=(yn,yp,...yr.) is a hypothetical new data vector, with same distribution
but independent of the original vector y=(yi,y2,..,¥s), which gave .
The expectation of the difference between D* and D(y, i) is the downward bias of
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D(y, 1) as an estimate of the true prediction error. From (3.2) and (3.3), we obtain

E(D™-D(y, ) =2E(Zh(u)(yi-p))a($) 3.4)
=2E(B' X’ (y-1)a(9).

The following approximation formula can be obtained from the equation (2.3) used for
determining 5.

BB+ (X WX +kD) N(X (y-1)/a($)-k8). (35)
The equation (3.5) provides an approximation of (3.4).

E(D*-D(y, 1)) =2E((y- W) X (X WX kD) D.¢ (ys -u))/a*($)

=our(W YA X (X WX+kI)'X'W 12y (36)
Thus, we have an estimator of D*, namely,
D* =D(y, i) +2tr(H), &%)

where H= WY2x(X WX+kI) "X WY. Monitoring the changes of D* in (37) as
the values of k vary, we can choose the shrinkage parameter k which minimizes
=X
D™,

If we take k=0, the D™in (3.7) is given by
D*=D(y, i)+2p, (38)

where # is the estimated mean using MLE B. Hence, D* is equivalent to Akaike's
Information Criterion(AIC). (Akaike,1973).

In linear regression setting, 5\" is given by

= Z(yi-x,-'ﬁ)z/oz'*ztr(HL),

where B=(X'X+k*1)'X’y, HL:X(X’X+k[5"X’, and Var(Y:)=02 If we replace o0°

with 8’=Y’ (I-X(X'X)-1X )y/(n-p), D*is equivalent to Mallows’s Cp statistic (1973).
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4. A SIMPLE EXAMPLE

As a simple example we fit logistic regression model to the artificial data displayed in
Table 1. The notation N(0,1) indicates a random variable following the standard normal
distribution and U(0,1) indicates a random variable following the uniform distribution on
the interval [0,1]. In the table X;~N(0,1) and X was generated from X; as follows :
X2=X1+07xN(0,1). Thus, X, and X2 are highly correlated and correlation coefficient is
0.82. The outcome variable was generated by comparing a U/(0,1) variate, U, to the true
probablity #=[1+exp(-1-X;-X2)]"" as follows : if U<z then Y=1, otherwise Y=0.

Table 1. Data displaying near
collinearity between the explanatory

variables.

Y X, X2

0 -1.07 -1.66
0 057 -0.36
1 -0.11 -0.17
1 0.31 131
1 1.09 2.03
1 0.61 0.62
0 0.08 -0.60
0 -0.77 -1.71
1 035 -0.18
1 -0.20 0.16
1 1.92 1.60
1 1.32 -1.34
1 -0.47 0.21
1 0.03 -0.56
1 -0.59 0.16
1 -0.36 0.32
1 224 255
0 -0.16 -1.03
1 0.9 0.09
0 ~-0.43 -0.37

The results of fitting logistic regression to various values of shrinkage parameter k
are presented in Table 2. The estimated coefficients are one-step estimates given in
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(24). The values of tr(H) decrease monotonically as k increases. However, the values

of D(y, 1) increse as k increases. Hence, as a result, the choice of k using ﬁ is a
trade-off problem and k=0.03 might be a proper choice.

Table 2. Estimated coefficients and the values of 5\*
for various values of shrinkage parameter k.

k Bo B B2 D(y. 1) | twE D*
0.00 2587 ~2.500 459 11.884 3.00 17.884
0.01 2.353 -2.208 4184 11916 2.891 17.698
0.02 2.160 -1.986 3842 11.996 2.800 17.596
0.03 1.998 -1.767 3555 12.112 2721 17554
0.04 1.860 -1597 3.310 12.250 2,653 17557
0.05 1.741 -1.451 3.099 12.406 2593 17591
01 1327 -0.954 2.368 13.329 2.369 18.023
02 0914 -0.484 1645 14.960 2,103 19.167
03 0.705 -0.267 1.282 16.286 1.933 20.152

5. CONCLUDING REMARKS

It is known that collinearity among the explanatory variables in GLMs seriously effects
the MLE in that the variance of this estimator is inflated in much the same way that
collinearity inflates the variance of the least aguares estimator in multiple regression. A
ridge-type estimator and a method for chooing a shrinkage parameter are discussed. This
method is based on a prediction oriented criterion, which is Mallows’s CL satistic in a
linear regression setting.

It seems necessary that some Monte Carlo study be done to compare the performance of
the ridge estimator relative to MLE, and another method for choosing a shrinkage
parameter also deserves further study.
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