• Title/Summary/Keyword: 일반인 선량

Search Result 339, Processing Time 0.032 seconds

Patient Dose for Diagnostic Radiological Procedures in Korea (일반 X-선 촬영에서의 환자피폭선량에 관한 조사연구)

  • Kim, You-Hyun;Choi, Jong-Hak;Kim, Sung-Soo;Lee, Chanh-Yeup;Lee, Young-Bae;Kim, Chel-Min
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.59-63
    • /
    • 2004
  • IAEA's Guidance Levels have been provided for Western people to the end. Guidance levels lower than the IAEA'S will be necessary in view of korean people's proportions. Therefore, We need to develope the standard doses for korean people. And we conducted a nationwide survey of patient dose from x-ray examinations in korea. 278 institutions were selected from Members Book of Korean Hospital Association. The valid response rate was approximately 57.9%. Doses were calculated from the questionnaires by NDD method. The results were as follows; 1) General radiographic equipments were 43%, fluoroscopic equipments 29%, dental equipments 13%, CT units 8% and mamographic units 7%. 2) According to classification by rectification way, three-phase equipments were 30%, inverter-type generators 29%, single- phase equipments 26%, unknown units 6%. 3) According to classification by receptor system, film-screen types were 46%, CR types 27%, OR types18% and unknown types 9%. 4) The number of examinations were chest 48%, spine 17% and abdomen 13%. 5) Patient doses were head AP 3.1 mGy, abdomen AP 3.5 mGy and chest PA 0.4 mGy.

  • PDF

Evaluation of the Patient Dose in Case of Standard Radiographic Examinations Using CR and DR (표준영상의학검사를 대상으로 한 CR과 DR에서의 환자선량평가)

  • Kim, Sang-Tae;Han, Beom-Hui
    • Journal of radiological science and technology
    • /
    • v.33 no.3
    • /
    • pp.173-178
    • /
    • 2010
  • In projection radiography, two types of digital imaging systems are currently available, computed radiography (CR) and digital radiography (DR): a difference between them can be stated in terms of dose and image quality. In the Department of Radiology our hospital, a flat-panel DR equipment (Digital diagnost, Philips) and two CR systems (ADC Compact plus digitizer, AGFA) are employed. Eight standard radiographic examinations (Skull AP, Skull LAT, Chest PA, Chest LAT, Abdomen AP, L-spine AP, L-spine LAT, Pelvis AP) were considered: doses delivered to patients in terms of both entrance skin dose (ESD) were calculated and compared in order to study the dosimetric discrepancies between CR and DR. Assessment of image quality is undertaken by Consultant Radiologists to ensure that the quality criteria for diagnostic radiographic images of the European guidelines were met. Results showed that both ESD in DR are lower than that in CR; all images met the criteria in the European Guidelines for both modalities and were used for reporting by the radiologists. Since the operators are the same and the image quality is comparable in both modalities, this study shows that in the considered examinations, DR can perform better than CR from a dosimetric point of view.

Indoor radon concentrations in house and public buildings (국내 가옥 및 공공건물내 라돈농도)

  • 김창규;김용재;이재성;노병환
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.67-68
    • /
    • 2003
  • 라돈은 일반적으로 가장 잘 알려진 천연 방사성핵종 중 하나로서 무향 무색의 불활성기체이며 붕괴과정에서 알파입자를 방출한다. 라돈에 의한 피폭선량은 라돈붕괴에 의해 생성된 라돈자손이 호흡기관 표면에 침착되어 방출하는 알파선에 기인한다. 따라서, 피폭선량에 주로 기인하는 것은 라돈 자신이 아니라 그의 단 반감기 라돈자손들이다. 이처럼 라돈은 잘 알려진 폐암 유발원으로서 고농도의 라돈에 장기간 노출되는 경우 폐암을 유발할 수 있다. UNSCEAR 보고서(1993)는 자연 환경중에서 인간이 받는 연간 총 피폭선량인 2.4 mSv중 약 50%에 해당하는 1.15 mSv가 라돈과 그 자손에 의한 것이며 대부분 옥내에서의 호흡에 의해 비롯된다고 평가하고 있다. (중략)

  • PDF

A study on a high level radiation dosimetry for reactor (SiC 다이오드를 이용한 원자로내 고준위 방사선 측정에 관한 연구)

  • Lee, Seung-Min;Lee, Heung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2622-2624
    • /
    • 2004
  • 본 논문은 원자력 발전소의 원자로 내 고준위 방사선 환경에서의 방사선량 측정에 SiC 다이오드를 이용하여 발생하는 펄스를 관측, 방사선량을 측정하는 기술에 대한 연구이다. 일반적으로 고준위 방사선 환경에서는 방사선측정 센서가 높은 방사선 에너지로 인해 손상되기 쉽다. 이러한 이유로 고준위 방사선 환경에서 내성이 강한 SiC 다이오드를 사용하였다. 방사선 입자를 하나의 에너지로 취급하면 방사선 입자가 센서로 입사하는 경우, 센서에는 방사선 에너지에 따라 약한 에너지가 유기된다. 유기된 에너지는 센서에서 전류의 형대로 출력되면, 이 전류를 신호처리하면 펄스의 형태로 성형이 가능하다. 시간당 성형된 펄스 수는 센서가 받은 방사선량에 비례하며 방사선이 많은 곳에서는 직류의 형태가 된다. 본 논문에서는 약한 전류형태로 출력되는 신호를 성형하여 디지털 신호처리를 하기 위한 펄스 형태로 성형하는데, 필요한 일련의 기술적인 사항에 관하여 연구하였다.

  • PDF

Review on the Pre-treatment Quality Assurance for Intensity Modulated Radiation Therapy (세기변조 방사선치료의 환자 치료 전 선량보증에 대한 고찰)

  • Han, Youngyih
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.213-219
    • /
    • 2013
  • This review paper deals with the current statues of pre-treatment quality assurance conducted for Intensity modulated radiation therapy. Focusing on the issues relevant to two-dimensional verification of absorbed dose distribution, review was made for the papers published during the last 3~4 years. Lastly, the future development direction was projected.

Field-in-Field Technique to Improve Dose Distribution in the Junction of the Field with Head & Neck Cancer (Field-in-Field Technique을 이용한 두경부암의 접합부위 선량개선에 관한 고찰)

  • Kim, Seon-Myeong;Lee, Yeong-Cheol;Jeong, Deok-Yang;Kim, Young-Bum
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.21 no.1
    • /
    • pp.17-23
    • /
    • 2009
  • Purpose: In treating head and neck cancer, it is very important to irradiate uniform dose on the junction of the bilateral irradiation field of the upper head and neck and the anterior irradiation field of the lower neck. In order to improve dose distribution on the junction, this study attempted to correct non uniform dose resulting from under dose and over dose using the field-in-field technique in treating the anterior irradiation field of the lower neck and to apply the technique to the treatment of head and neck cancer through comparison with conventional treatment. Materials and Methods: In order to examine dose difference between the entry point and the exit point where beam diffusion happens in bilateral irradiation on the upper head and neck, we used an anthropomorphic phantom. Computer Tomography was applied to the anthropomorphic phantom, the dose of interest points was compared in radiation treatment planning, and it was corrected by calculating the dose ratio at the junction of the lower neck. Dose distribution on the junction of the irradiated field was determined by placing low-sensitivity film on the junction of the lower neck and measuring dose distribution on the conventional bilateral irradiation of the upper head and neck and on the anterior irradiation of the lower neck. In addition, using the field-in-field technique, which takes into account beam diffusion resulting from the bilateral irradiation of the upper head and neck, we measured difference in dose distribution on the junction in the anterior irradiation of the lower neck. In order to examine the dose at interest points on the junction, we compared and analyzed the change of dose at the interest points on the anthropomorphic phantom using a thermoluminescence dosimeter. Results: In case of dose sum with the bilateral irradiation of the upper head and neck when the field-in-field technique is applied to the junction of the lower neck in radiation treatment planning, The dose of under dose areas increased by 4.7~8.65%. The dose of over dose areas also decreased by 2.75~10.45%. Moreover, in the measurement using low-sensitivity film, the dose of under dose areas increased by 11.3%, and that of over dose areas decreased by 5.3%. In the measurement of interest point dose using a thermoluminescence dosimeter, the application of the field-in-field technique corrected under dose by minimum 7.5% and maximum 17.6%. Thus, with the technique, we could improve non.uniform dose distribution. Conclusion: By applying the field-in-field technique, which takes into account beam divergence in radiation treatment planning, we could reduce cold spots and hot spots through the correction of dose on the junction and, in particular, we could correct under dose at the entry point resulting from beam divergence. This study suggests that the clinical application of the field-in-field technique may reduce the risk of lymph node metastasis caused by under dose on the cervical lymph node.

  • PDF

Evaluation of Radiation Exposure to Nurse on Nuclear Medicine Examination by Use Radioisotope (방사성 동위원소를 이용한 핵의학과 검사에서 병동 간호사의 방사선 피폭선량 평가)

  • Jeong, Jae Hoon;Lee, Chung Wun;You, Yeon Wook;Seo, Yeong Deok;Choi, Ho Yong;Kim, Yun Cheol;Kim, Yong Geun;Won, Woo Jae
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.21 no.1
    • /
    • pp.44-49
    • /
    • 2017
  • Purpose Radiation exposure management has been strictly regulated for the radiation workers, but there are only a few studies on potential risk of radiation exposure to non-radiation workers, especially nurses in a general ward. The present study aimed to estimate the exact total exposure of the nurse in a general ward by close contact with the patient undergoing nuclear medicine examinations. Materials and Methods Radiation exposure rate was determined by using thermoluminescent dosimeter (TLD) and optical simulated luminescence (OSL) in 14 nurses in a general ward from October 2015 to June 2016. External radiation rate was measured immediately after injection and examination at skin surface, and 50 cm and 1 m distance from 50 patients (PET/CT 20 pts; Bone scan 20 pts; Myocardial SPECT 10 pts). After measurement, effective half-life, and total radiation exposure expected in nurses were calculated. Then, expected total exposure was compared with total exposures actually measured in nurses by TLD and OSL. Results Mean and maximum amount of radiation exposure of 14 nurses in a general ward were 0.01 and 0.02 mSv, respectively in each measuring period. External radiation rate after injection at skin surface, 0.5 m and 1 m distance from patients was as following; $376.0{\pm}25.2$, $88.1{\pm}8.2$ and $29.0{\pm}5.8{\mu}Sv/hr$, respectively in PET/CT; $206.7{\pm}56.6$, $23.1{\pm}4.4$ and $10.1{\pm}1.4{\mu}Sv/hr$, respectively in bone scan; $22.5{\pm}2.6$, $2.4{\pm}0.7$ and $0.9{\pm}0.2{\mu}Sv/hr$, respectively in myocardial SPECT. After examination, external radiation rate at skin surface, 0.5 m and 1 m distance from patients was decreased as following; $165.3{\pm}22.1$, $38.7{\pm}5.9$ and $12.4{\pm}2.5{\mu}Sv/hr$, respectively in PET/CT; $32.1{\pm}8.7$, $6.2{\pm}1.1$, $2.8{\pm}0.6$, respectively in bone scan; $14.0{\pm}1.2$, $2.1{\pm}0.3$, $0.8{\pm}0.2{\mu}Sv/hr$, respectively in myocardial SPECT. Based upon the results, an effective half-life was calculated, and at 30 minutes after examination the time to reach normal dose limit in 'Nuclear Safety Act' was calculated conservatively without considering a half-life. In oder of distance (at skin surface, 0.5 m and 1 m distance from patients), it was 7.9, 34.1 and 106.8 hr, respectively in PET/CT; 40.4, 199.5 and 451.1 hr, respectively in bone scan, 62.5, 519.3 and 1313.6 hr, respectively in myocardial SPECT. Conclusion Radiation exposure rate may differ slightly depending on the work process and the environment in a general ward. Exposure rate was measured at step in the general examination procedure and it made our results more reliable. Our results clearly showed that total amount of radiation exposure caused by residual radioactive isotope in the patient body was neglectable, even comparing with the natural radiation exposure. In conclusion, nurses in a general ward were much less exposed than the normal dose limit, and the effects of exposure by contacting patients undergoing nuclear medicine examination was ignorable.

  • PDF

Medical Radiation Exposure Dose of Workers in the Private Study of the Job Function (의료기관 방사선 종사자의 직무별 개인피폭선량에 관한 연구)

  • Kang, Chun-Goo;Oh, Ki-Baek;Park, Hoon-Hee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.2
    • /
    • pp.3-12
    • /
    • 2011
  • Purpose: With increasing medical use of radiation and radioactive isotopes, there is a need to better manage the risk of radiation exposure. This study aims to grasp and analyze the individual radiation exposure situations of radiation-related workers in a medical facility by specific job, in order to instill awareness of radiation danger and to assist in safety and radiation exposure management for such workers. Materials and Methods: From January 1, 2010 December 31, 2010, medical practitioners working in the radiation is classified as a regular personal radiation dosimetry, and subsequently one year 540 people managed investigation department to target workers, dose sectional area, working period, identify the job function-related tasks for a deep dose, respectively, the annual average radiation dose were analyzed. Frequency analysis methods include ANOVA was performed. Results: Medical radiation workers in the department an annual radiation dose of Nuclear and 4.57 mSv a was highest, dose zone-specific distribution of nuclear medicine and in the 5.01~19.05 mSv in the high dose area distribution showed departmental radiation four of the annual radiation dose of Nuclear and 7.14 mSv showed the highest radiation dose. More work an average annual radiation dose according to the job function related to the synthesis of Cyclotron to 17.47 mSv work showed the highest radiation dose, Gamma camera Cinema Room 7.24 mSv, PET/CT Cinema Room service is 7.60 mSv, 2.04 mSv in order of intervention high, were analyzed. Working period, according to domain-specific average annual dose of radiation dose from 10 to 14 in oral and maxillofacial radiology practitioners as high as 1.01~3.00 mSv average dose showed the Department of Radiology, 1-4 years, 5-9 years, respectively, 1.01 workers~8.00 mSv in the range of the most high-dose region showed the distribution, nuclear medicine, and the 1-4 years, 5-9 years 3.01~19.05 mSv, respectively, workers of the highest dose showed the distribution of the area in the range of 10 to 14 years, Workers at 15-19 3.01~15.00 mSv, respectively in the range of the high-dose region were distributed. Conclusion: These results suggest that medical radiation workers working in Nuclear Medicine radiation safety management of the majority of the current were carried out in the effectiveness, depending on job characteristics has been found that many differences. However, this requires efforts to minimize radiation exposure, and systematic training for them and for reasonable radiation exposure management system is needed.

  • PDF

Patient Radiation Exposure Dose Evaluation of Whole Spine Scanography Due to Exposure Direction (Whole Spine Scanography의 검사방향에 따른 환자 선량 평가)

  • Kim, Jung-Su;Seo, Deok-Nam;Kwon, Soon-Mu;Kim, Jung-Min
    • Journal of radiological science and technology
    • /
    • v.38 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • Whole spine scanography (WSS) is a radiological examination that exposes the whole body of the individual being examined to x-ray radiation. WSS is often repeated during the treatment period, which results in a much greater radiation exposure than that in routine x-ray examinations. The aims of the current study were to evaluate the patient dose of WSS using computer simulation, image magnification and angulation of phantom image using different patient position. We evaluated the effective dose(ED) of 23 consecutive patients (M : F = 13:10) who underwent WSS, based on the automatic image pasting method for multiple exposure digital radiography. The Anterior-Posterior position(AP) and Posterior-Anterior position( PA) projection EDs were evaluated based on the PC based Monte Carlo simulation. We measured spine transverse process distance and angulation using DICOM measurement. For all patient, the average ED was 0.069 mSv for AP position and 0.0361 mSv for PA position. AP position calculated double exposure then PA position. For male patient, the average ED was 0.089 mSv(AP) and 0.050 mSv(PA). For female patient, the average ED was 0.0431 mSv(AP) and 0.026 mSv(PA). The transverse process of PA spine image measured 5% higher than AP but angulation of transverse process was no significant differences. In clinical practice, just by change the patient position was conformed to reduce the ED of patient. Therefor we need to redefine of protocol for digital radiography such as WSS. whole spine scanography, effective dose, patient exposure dose, exposure direction. protocol optimization.

Measurement of the Skin Dose of Patient Using the Optically Stimulated Luminescent Dosimeter at Diagnostic Radiography (진단방사선촬영에서 광자극발광선량계를 이용한 환자 피부선량의 측정)

  • Kim, Jong-Eon;Im, In-Chul;Min, Byung-In
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.9
    • /
    • pp.437-442
    • /
    • 2011
  • The purpose of this study is an measurement of the skin dose of a patient by using the OSLD(optically stimulated luminescent dosimeter) under several irradiation conditions of the X-ray beam for diagnostic radiography. The measurements of skin dose were performed for head, chest, and pelvis. And test of reproducibility was carried out at the chest. As a result, we obtained the skin dose at forehead of head to be 1.30 mSv. The skin doses at xiphoid process, breast and apex of the lung of the chest were acquired 0.92, 0.52 and 0.70 mSv, respectively. And we obtained the skin doses at the left pelvis and the right pelvis to be 2.78 and 3.08 mSv, respectively. As for reproducibility, a coefficient of variation was 0.033. The skin doses were exhibited the values corresponding from 1/100 to 1/17 of the dose limit of the public(50 mSv) at the deterministic effect. In order to make accurate measurements of the skin doses for each tube voltage, the measured values have to multiply by the displayed values of reader by a correction factor. The energy response of the OSLD with the tube voltage will be studied in the near future.