• Title/Summary/Keyword: 일반인 선량

Search Result 339, Processing Time 0.032 seconds

A Study on the Presentation of Entrance Surface Dose Model using Semiconductor Dosimeter, General Dosimeter, Glass Dosimeter: Focusing on Comparative Analysis of Effective Dose and Disease Risk through PCXMC 2.0 based on Monte Carlo Simulation (반도체 선량계, 일반 선량계, 유리 선량계를 이용한 입사표면선량 모델 제시에 관한 연구: 몬테카를로 시뮬레이션 기반의 PCXMC 2.0을 통한 유효선량과 발병 위험도의 비교분석을 중심으로)

  • Hwang, Jun-Ho;Lee, Kyung-Bae
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.2
    • /
    • pp.149-157
    • /
    • 2018
  • One of the purposes of radiation protection is to minimize stochastic effects. PCXMC 2.0 is a Monte Carlo Simulation based program and makes it possible to predict effective dose and the probability of cancer development through entrance surface dose. Therefore, it is especially important to measure entrance surface dose through dosimeter. The purpose of this study is to measure entrance surface dose through semiconductor dosimeter, general dosimeter, glass dosimeter, and to compare and analyze the effective dose and probability of disease of critical organs. As an experimental method, the entrance surface dose of skull, chest, abdomen was measured per dosimeter and the effective dose and the probability of cancer development of critical organs per area was evaluated by PCXMC 2.0. As a result, the entrance surface dose per area was different in the order of a general dosimeter, a semiconductor dosimeter, and a glass dosimeter even under the same condition. Base on this analysis, the effective dose and probability of developing cancer of critical organs were also different in the order of a general dosimeter, a semiconductor dosimeter, and a glass dosimeter. In conclusion, it was found that the effective dose and the risk of diseases differ according to the dosimeter used, even under the same conditions, and through this study it was found that it is important to present an accurate entrance surface dose model according to each dosimeter.

A Preliminary Establishment of Dose Constraints for the Member of Public Taking into Account Multi-unit Nuclear Power Plants in Korea (국내 복수호기 원전 운영을 고려한 일반인 선량제약치 설정에 대한 고찰)

  • Kong, Tae-Young;Choi, Jong-Rack;Son, Jung-Kwon;Kim, Hee-Geun
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.3
    • /
    • pp.129-137
    • /
    • 2012
  • In the 2007 recommendation, the ICRP evolves from the previous process-based system of practices and intervention to the system based on the characteristics of radiation exposure situation. In addition, ICRP recommends the application of source-related dose constraints under the planned exposure situation as a tool for the optimization of protection to workers and the member of public. In this study, the analysis of radioactive effluents from Korean nuclear power plants and the public dose assessment were conducted in reference with the use of dose constraints. Finally, the measure to implement the dose constraints for the member of public was suggested taking into account multi-unit reactors operating at a single site in Korea.

Trends and Issues in Metabolism and Dosimetry for Tritium Intake (삼중수소 피폭방사선량 평가의 경향과 이슈에 대한 고찰)

  • Kim, Hee-Geun;Kong, Tae-Young;Jeong, Woo-Tae
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.2
    • /
    • pp.99-106
    • /
    • 2011
  • Tritium is the one of the most important radionuclide for workers in nuclear power plants (NPPs) and the public, from the dosimetric point of view. Humans are likely to have internal radiation exposure by tritium inhalation. Radiation exposure by tritium accounts for approximately 7% and 60~90% of the total radiation exposure of NPP workers and the public during normal operation, respectively. Thus, many researches have been conducted to estimate the internal dose by tritium precisely in the world. In terms of tritium dosimetry, this paper provides the current status of research for tritium metabolism and dosimetry.

Comparisons and Measurements the Dose Value Using the Semiconductor Dosimeter and Dose Area Product Dosimeter in Skull, Chest and Abdomen (두개부, 흉부, 복부검사 시 반도체 선량계와 면적 선량계를 이용한 선량 값의 측정 및 비교)

  • Kim, Ki-Won;Son, Jin-Hyun
    • Journal of radiological science and technology
    • /
    • v.38 no.2
    • /
    • pp.101-106
    • /
    • 2015
  • Recently, There has been a growing interests in exposure dose to the patient who take a examination using radiation. The radiological technologists should be concerned about the exposure dose to patients and make an efforts to reduce the patient dose without decreasing the image quality. In the case of foreign, the exposure dose of general X-ray examination have been managed by standard value of exposure dose using dose area product (DAP) and entrance surface dose (ESD) dosimeter. This study is to compare DAP and ESD in skull anterior posterior (AP), chest posterior anterior (PA), and abdomen AP projections of phantom by using DAP and ESD dosimeter. In the results, there were no differences between DAP and ESD dosimeter.

고선량율 근접치료의 위험도 분석

  • 최진호;이레나;이상훈;이세병;이희석
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.57-57
    • /
    • 2003
  • 목적 : 미국 NRC 의 위험도 평가 방법론(NUREG/CR-6642)에 국내에서 시행되는 고선량율 근접치료의 표준입력 자료를 대입하여 고선량율 근접치료시 위험도를 정량적으로 산출하고 그 값을 비교하고자 한다. 대상 및 방법 : 고선량율 근접치료 시스템에 대한 위험도 평가를 위해 국내에서 고선량율 근접치료를 시행하고 있는 17개 의료기관으로부터 방사성동위원소의 설치와 폐기시의 방사능, 선원의 유형, 연간 총 치료회수 등 기초 자료를 수집하였다. 이로부터 방사성동위원소의 평균세기 연간 치료회수 등을 미국 NRC의 위험도 평가 방법론의 데이터베이스에 입력하여 고선량율 근접치료의 직무별, 피폭인의 종류, 정상상태와 사고 등의 형태에 따라 그 위험도를 구하였다. 결과 : 국내 고선량율 근접치료의 위험도는 미국 NRC의 위험도 평가 방법론에 따른 데이터베이스의 입력 결과 일반인의 정상상태와 사고 그리고 방사선종사자의 정상상태와 사고 시에 따라 그 위험도가 1.52-01, 2.96-03, 8.64-01, 3.32-02 rem/yr로 산출되었고 그 값을 미국 NRC의 값과 비교하였다. 결론 : 고선량율 근접치료 시 미국 NRC의 위험도 결과보다는 국내의 경우 수배 정도 높게 계산되었고 일반인과 방사선종사자, 정상상태와 사고, 직무별 패턴 등은 동일한 것으로 간주된다.

  • PDF

A Study on the Environmental Radiation Dose Measurement in the Nuclear Medicine Department (핵의학과에서 환경방사선량 측정에 대한 연구)

  • Kang, Bo-Sun;Lim, Chang-Seon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.6
    • /
    • pp.2118-2123
    • /
    • 2010
  • Korean individual occupational exposure control is focused on the retrospective service to the over-exposed person by the reading of personal dosimeter. Since the radiophamaceuticals using in the nuclear medicine department are uncontained radiation sources, the potential exposure at working environment is very high. Moreover, a patient remains radioactive for hours or even days after the administration of a radiopharmaceutical for diagnosis or treatment. Thus, the proper working environmental exposure control must be established and executed to protect not only the affiliated employees, but also guardians accompanying patients and temporarily visiting public from the exposure by the patients. Japanese radiation protection law regulates working environmental radiation exposure by regularly measuring and filing the environmental dose for years. This study was aimed at measuring working environmental radiation dose in the nuclear medicine department of an university hospital located in Daejeon, Korea. We measured the accumulation radiation dose in air at 8 locations in the nuclear medicine department by using the same method as in Japan with glass dosimeters. The highest dose rate, 0.23 mSv per month, was measured at the waiting room, and the second one is at reception desk. Even though the doses were lower than the Korean constraint dose rate (0.3 mSv/week) at the boundary of the radiation controlled area, it was over the dose limit of public (1 mSv/y) and environment (0.25 mSv/y). Conclusionally, it was found that the new or additional procedure was necessary to less the exposure dose to the receptionist and guardians by the environmental radiation dose in the nuclear medicine department.

An Assessment of Entrance Surface Dose Using the nanoDot Dosimeter (나노도트선량계를 이용한 입사표면선량의 평가)

  • Kim, Jong-Eon;Im, In-Chul;Park, Cheol-Woo
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.6
    • /
    • pp.377-381
    • /
    • 2011
  • The purpose of this study is an assessment between the measured value of the nanoDot dosimeter and the calculated value of Non Dosimeter Dosimetry-Method(NDD-M) for entrance surface dose in general radiography. Measurement and calculation of the entrance surface doses were performed for head(AP), abdomen(AP), pelvis(AP), thoracic spine(AP) and lumbar spine(AP). As a result, the relative ratios of the measured value to the calculated value were acquired 1.5-2.1 for each region. Reproducibility acquired 0.035 as a coefficient of variation.

A Comparison of Density and Patient Doses According to kVp and mAs Changes in General Radiography (일반촬영에서 kVp와 mAs의 변화에 따른 농도와 환자 선량 비교)

  • Kang, Eun Bo
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.7
    • /
    • pp.987-994
    • /
    • 2019
  • Low energy x-rays that occur in the low tube voltage radiography of general radiography are absorbed strongly in the body and do not aid image quality enhancement. This study maintains titer in general radiography while using tube current that are proportional to density and the tube voltage 15% principle according to density to reduce patient exposure doses, and area doses and entrance surface doses were measured to compare patient exposure doses. In hand, knee, abdomen, and skull radiography, kVp was increased to 115% and mAs was decreased to 50% and kVp was decreased to 85% while mAs was increased to 200% and area doses and entrance surface doses were measured to compare relative doses. Also, 5 places in each image were set, density was measured, and Kruskal wallis H test was conducted to observe significance probabilities between groups. To fix density, kVp was increased to 115% and mAs was decreased to 50% and after measurements of mean area doses and entrance surface doses were made by each part, each decreased to 58.68% and 59.85% when standard doses were set to 100%, and each increased to 147.28% and 159.9% when kVp was decreased to 85% and mAs was increased to 200%. Comparisons of density changes showed that hand, knee, abdomen, and skull radiography all displayed significance probabilities>0.05, showing no changes in concentration. Radiography that increases kVp and lowers mAs through reasonable calculations within ranges that don't affect resolution and contrast seems to be a simple way to decrease patient exposure doses.