• Title/Summary/Keyword: 일반아스팔트혼합물

Search Result 68, Processing Time 0.019 seconds

An Alternative One-Step Computation Approach for Computing Thermal Stress of Asphalt Mixture: the Laplace Transformation (새로운 아스팔트 혼합물의 저온응력 계산 기법에 대한 고찰: 라플라스 변환)

  • Moon, Ki Hoon;Kwon, Oh Sun;Cho, Mun Jin;Cannone, Falchetto Augusto
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.219-225
    • /
    • 2019
  • Computing low temperature performance of asphalt mixture is one of the important tasks especially for cold regions. It is well known that experimental creep testing work is needed for computation of thermal stress and critical cracking temperature of given asphalt mixture. Thermal stress is conventionally computed through two steps of computation. First, the relaxation modulus is generated thorough the inter-conversion of the experimental creep stiffness data through the application of Hopkins and Hamming's algorithm. Secondly, thermal stress is numerically estimated solving the convolution integral. In this paper, one-step thermal stress computation methodology based on the Laplace transformation is introduced. After the extensive experimental works and comparisons of two different computation approaches, it is found that Laplace transformation application provides reliable computation results compared to the conventional approach: using two step computation with Hopkins and Hamming's algorithm.

Evaluation of the Effect of Rust Formation and the Characteristics of Sound Absorption of PSMA Concrete Mixture Using Steel Slag Aggregate (제강 슬래그 골재를 이용한 PSMA 혼합물의 녹물 발생 영향 및 흡음 특성 평가)

  • Kim, Hyeok-Jung;Jang, Dong-Bok;Kim, Han-Na
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.594-601
    • /
    • 2021
  • In order to expanding of the use of steel slag, a by-product of steel industry, as a road paving construction material, this present study confirmed the possibility of the rust formation of steel slag aggregate and evaluated the durability performance and the noise reduction characteristics of asphalt concrete mixture. As a result of conducting the rust formation test of aggregate, no rust was observed in both aggregate, so it is judged that the possibility of rust formation in the actual road water environment is very low. As a result of performing the moisture resistance test, all mixtures showed a tensile strength ratio exceeding 85%, satisfied the standard as asphalt mixture. In addition, the sound absorption coefficient of the steel slag aggregate mixture was measured to be higher than that of the general aggregate mixture. Accordingly, it is speculated th at th e steel slag aggregate mixture can more effectively respond to road noise reduction than the general mixture.

Development of Failure Criterion of Hot Mix Asphalt Using Triaxial Shear Strength Test (삼축압축시험을 이용한 아스팔트 혼합물의 파괴기준 개발)

  • Kim, Seong Kyum;Lee, Kwan Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.947-954
    • /
    • 2014
  • In general, Fracture of the material is not occurring of the maximum normal stress or the maximum shear stress failure in the state. Maximum normal stress and maximum shear stress in the state of Critical coupling from being destroyed based on the Mohr-Coulomb theory. Couple of different mixtures, including permeable asphalt pavement, SMA and dense-graded asphalt mixture, were used for compression triaxial test at $45^{\circ}C$ and $60^{\circ}C$. Mohr-Coulomb theory to the analysis of compression triaxial test result of the internal friction angle $38.9^{\circ}{\sim}46.9^{\circ}$ measured somewhat irregularly, but in the case of cohesion, depending on whether the temperature and immersion of the specimen appeared differently. In addition, Indirect tensile test and compression triaxial test of the asphalt mixture to determine the correlation between compression triaxial test results assessed as cohesion and internal friction angle calculated using the theoretical Indirect tensile strength and measured indirectly tensile strength were analyzed. The Measured & Predicted IDT St values tended to be proportional.

Evaluation of Characteristic Improvement of Waste-Polyethylene Asphalt Concrete (폐폴리에틸렌 필름 재활용 아스팔트 콘크리트의 특성 분석)

  • Kim, Kwang-Woo;Li, Xing-Fan;Jeong, Seung-Ho;Lee, Soon-Jae;Lee, Gi-Ho
    • International Journal of Highway Engineering
    • /
    • v.4 no.1 s.11
    • /
    • pp.161-170
    • /
    • 2002
  • This study is a fundamental research for recycling waste polyethylene film(WPF) in asphalt concrete for roadway pavement. The objective of this study is to develop technology of making waste polyethylene asphalt mixture and evaluate properties of the asphalt concrete containing WPF. Asphalt concrete for surface course of pavement was produced through an appropriate mix-design using dense-graded and gap-graded aggregates. Marshall mix design, indirect tensile strength test, wheel tracking test and tensile fatigue test were performed. Test result showed that some WPF asphalt mixtures had a high tensile property and good resistances against rutting and fatigue cracking, compared with normal asphalt mixture.

  • PDF

Evaluation of Fundamental Properties of Warm-mix Recycled Asphalt Concretes (준고온 재생 아스팔트 콘크리트의 기본특성 평가)

  • Kim, Nam-Ho;Kim, Jin-C.;Hong, Jun-P.;Kim, Kwang-W
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.111-120
    • /
    • 2010
  • This study evaluated strength properties of recycled asphalt concretes using warm-mix technology. Granite with maximum size of 13mm and penetration grade of 80-100 virgin binder were used for mixing in recycled mixtures. Mix design was performed using 20% and 30% RAP(coarse : fine= 6 : 4) contents. GPC, penetration, absolute viscosity and kinematic viscosity were measured for determining ratio of two warm-mix additives (Evotherm and Sasobit). Low-density polyethylene(LD) used as asphalt modifier for improving stiffness of recycled WMA mixtures in this study. Therefore, a total of 11 mixtures were prepared in this study; 8 warm-mix recycled mixtures(2 RAP contents${\times}$2 warm-mix additives${\times}$2 modifiers), 2 hot-mix recycled mixtures and 1 HMA virgin mixture(control). Deformation strength, indirect tensile strength, moisture sensitivity, permanent deformation by wheel tracking tests were measured out for evaluating fundamental properties of recycled asphalt concretes using warm-mix technology.

Performance Evaluation of perpetual Asphalt Pavements Using an Accelerated Pavement Tester (포장가속시험기를 이용한 장수명 아스팔프포장의 공용성 평가 연구)

  • Song, Seo-Gyu;Lee, Jung-Hun;Lee, Hyun-Jong;Hwang, Eui-Yoon
    • International Journal of Highway Engineering
    • /
    • v.7 no.3 s.25
    • /
    • pp.1-10
    • /
    • 2005
  • In this study, accelerated pavement tester(APT) was performed on long-life asphalt pavements that can save maintenance and user costs by increasing the design life twice longer than conventional asphalt pavements. Basic material testings are first conducted on a high modulus base(HMB) mixture developed in this study. Four different pavement sections including thin and thick conventional and thin and thick HMB courses are constructed to compare the load-carrying capacities and to investigate the fatigue and rutting performances using an accelerated pavement tester. Tensile strain values at the bottom of base courses under the various loading levels are measured. The tensile strain values of the HMB sections are lower than those of the conventional sections. It is observed from the APT performed on the thin pavement sections that no significant cracks are developed up to the 180,000 cycles of a wheel load. In terms of rutting, only 3mm of rutting is developed in the thick HMB section while 5.3mm of rutting is developed in the thick conventional section at the 90,000 cycles of the wheel load. The HMB material developed in this study can be successfully used in the long-life asphalt pavements because of its excellent fatigue and rutting performances. It is estimated from a series of structural analysis that the use of the HMB material instead of the conventional base materials may reduce the asphalt thickness at least 5cm because of its better load-carrying capacity.

  • PDF

Statistical Inference for Process Mean of Deformation Strength of Asphalt Mixtures (통계적 근거에 의한 표층 아스팔트 혼합물 변형강도의 배합강도 설정연구)

  • La, Il-Ho;Kim, Jin-C.;Doh, Young-S.;Kim, Kwang-W.
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.127-134
    • /
    • 2009
  • This study was performed to establish the process mean which is statistically satisfying the critical limit of deformation strength $(S_D)$, which is found to reflect rutting characteristics of asphalt mixture relatively well. The process means were determined using the critical $S_D$ values (3MPa for local highway and 4MPa for arterial highways), which were obtained from correlation analysis of APA and $S_D$ test data of actual highway projects, and coefficient of variation of 32 combinations of domestic mixtures. The process means of 3.2 MPa for local highway and 4.25 MPa for arterial highways were suggested when using 3 specimens (diameter of 100mm). However, since these values are based on the loading speed of 30mm/min, the higher values, 3.5 MPa for local highway and 4.5 MPa for arterial highways, were suggested, respectively, if the loading speed of 50mm/min is applied using the old Marshall machine, which should give higher test values.

  • PDF

Applicability of Color Bituminous Mixtures for Highway Pavement (차도용 칼라 역청 혼합물의 적용성 연구)

  • Doh, Y.S.;Oh, S.K.;Choi, Y.K.;Kim, K.W.
    • International Journal of Highway Engineering
    • /
    • v.6 no.4 s.22
    • /
    • pp.91-100
    • /
    • 2004
  • This study was Performed to evaluate applicability of color flexible pavement concrete (CFPC) for motorway pavement. Color flexible pavement has been applied to non-motorway pavements, such as pedestrian and bicycle road. Two polymers were used to modify the binder and to strengthen the stiffness of pavement mixture. Waste paper was used to prevent the asphalt of gap-grade mixture from draining. Marshall properties, indirect tensile strength(ITS), tensile strength ratio(TSR) before and after freezing-and-thawing treatment and artificial aging, permanent deformation and fatigue life were measured. Color bituminous concrete mixtures used this study had nearly the same quality in mechanical properties when compared with conventional asphalt concrete mixtures manufactured with AP-3 and all mixtures satisfied with domestic specification for motorway pavement. Therefore, it is proved that the color bituminous concrete used this study can be applied for motorway pavement.

  • PDF

Development of ViscoElastoPlastic Continuum Damage (VEPCD) Model for Response Prediction of HMAs under Tensile Loading (인장하중을 받는 아스팔트 혼합물의 점탄소성 모형의 개발)

  • Underwood, B. Shane;Kim, Y. Richard;Seo, Youngguk;Lee, Kwang-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1D
    • /
    • pp.45-55
    • /
    • 2008
  • The objective of this research was to develop a VEPCD (ViscoElastoPlastic Continuum Damage) Model which is used to predict the behavior of asphalt concrete under various loading and temperature conditions. This paper presents the VEPCD model formulated in a tension mode and its validation using four hot mix asphalt (HMA) mixtures: dense-graded HMA, SBS, CR-TB, and Terpolymer. Modelling approaches consist of two components: the ViscoElastic Continuum Damage (VECD) mechanics and the ViscoPlastic (VP) theory. The VECD model was to describe the time-dependent behavior of HMA with growing damage. The irrecoverable (whether time-dependent or independent) strain has been described by the VP model. Based on the strain decomposition principle, these two models are integrated to form the VEPCD model. For validating the VEPCD model, two types of laboratory tests were performed: 1) a constant crosshead strain rate tension test, 2) a fatigue test with randomly selected load levels and frequencies.