• Title/Summary/Keyword: 인터넷기반정보시스템

Search Result 4,100, Processing Time 0.031 seconds

Digital Hologram Compression Technique By Hybrid Video Coding (하이브리드 비디오 코팅에 의한 디지털 홀로그램 압축기술)

  • Seo, Young-Ho;Choi, Hyun-Jun;Kang, Hoon-Jong;Lee, Seung-Hyun;Kim, Dong-Wook
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.29-40
    • /
    • 2005
  • According as base of digital hologram has been magnified, discussion of compression technology is expected as a international standard which defines the compression technique of 3D image and video has been progressed in form of 3DAV which is a part of MPEG. As we can identify in case of 3DAV, the coding technique has high possibility to be formed into the hybrid type which is a merged, refined, or mixid with the various previous technique. Therefore, we wish to present the relationship between various image/video coding techniques and digital hologram In this paper, we propose an efficient coding method of digital hologram using standard compression tools for video and image. At first, we convert fringe patterns into video data using a principle of CGH(Computer Generated Hologram), and then encode it. In this research, we propose a compression algorithm is made up of various method such as pre-processing for transform, local segmentation with global information of object image, frequency transform for coding, scanning to make fringe to video stream, classification of coefficients, and hybrid video coding. Finally the proposed hybrid compression algorithm is all of these methods. The tool for still image coding is JPEG2000, and the toots for video coding include various international compression algorithm such as MPEG-2, MPEG-4, and H.264 and various lossless compression algorithm. The proposed algorithm illustrated that it have better properties for reconstruction than the previous researches on far greater compression rate above from four times to eight times as much. Therefore we expect that the proposed technique for digital hologram coding is to be a good preceding research.

Improving the Accuracy of Document Classification by Learning Heterogeneity (이질성 학습을 통한 문서 분류의 정확성 향상 기법)

  • Wong, William Xiu Shun;Hyun, Yoonjin;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.21-44
    • /
    • 2018
  • In recent years, the rapid development of internet technology and the popularization of smart devices have resulted in massive amounts of text data. Those text data were produced and distributed through various media platforms such as World Wide Web, Internet news feeds, microblog, and social media. However, this enormous amount of easily obtained information is lack of organization. Therefore, this problem has raised the interest of many researchers in order to manage this huge amount of information. Further, this problem also required professionals that are capable of classifying relevant information and hence text classification is introduced. Text classification is a challenging task in modern data analysis, which it needs to assign a text document into one or more predefined categories or classes. In text classification field, there are different kinds of techniques available such as K-Nearest Neighbor, Naïve Bayes Algorithm, Support Vector Machine, Decision Tree, and Artificial Neural Network. However, while dealing with huge amount of text data, model performance and accuracy becomes a challenge. According to the type of words used in the corpus and type of features created for classification, the performance of a text classification model can be varied. Most of the attempts are been made based on proposing a new algorithm or modifying an existing algorithm. This kind of research can be said already reached their certain limitations for further improvements. In this study, aside from proposing a new algorithm or modifying the algorithm, we focus on searching a way to modify the use of data. It is widely known that classifier performance is influenced by the quality of training data upon which this classifier is built. The real world datasets in most of the time contain noise, or in other words noisy data, these can actually affect the decision made by the classifiers built from these data. In this study, we consider that the data from different domains, which is heterogeneous data might have the characteristics of noise which can be utilized in the classification process. In order to build the classifier, machine learning algorithm is performed based on the assumption that the characteristics of training data and target data are the same or very similar to each other. However, in the case of unstructured data such as text, the features are determined according to the vocabularies included in the document. If the viewpoints of the learning data and target data are different, the features may be appearing different between these two data. In this study, we attempt to improve the classification accuracy by strengthening the robustness of the document classifier through artificially injecting the noise into the process of constructing the document classifier. With data coming from various kind of sources, these data are likely formatted differently. These cause difficulties for traditional machine learning algorithms because they are not developed to recognize different type of data representation at one time and to put them together in same generalization. Therefore, in order to utilize heterogeneous data in the learning process of document classifier, we apply semi-supervised learning in our study. However, unlabeled data might have the possibility to degrade the performance of the document classifier. Therefore, we further proposed a method called Rule Selection-Based Ensemble Semi-Supervised Learning Algorithm (RSESLA) to select only the documents that contributing to the accuracy improvement of the classifier. RSESLA creates multiple views by manipulating the features using different types of classification models and different types of heterogeneous data. The most confident classification rules will be selected and applied for the final decision making. In this paper, three different types of real-world data sources were used, which are news, twitter and blogs.

Sentiment analysis on movie review through building modified sentiment dictionary by movie genre (영역별 맞춤형 감성사전 구축을 통한 영화리뷰 감성분석)

  • Lee, Sang Hoon;Cui, Jing;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.97-113
    • /
    • 2016
  • Due to the growth of internet data and the rapid development of internet technology, "big data" analysis is actively conducted to analyze enormous data for various purposes. Especially in recent years, a number of studies have been performed on the applications of text mining techniques in order to overcome the limitations of existing structured data analysis. Various studies on sentiment analysis, the part of text mining techniques, are actively studied to score opinions based on the distribution of polarity of words in documents. Usually, the sentiment analysis uses sentiment dictionary contains positivity and negativity of vocabularies. As a part of such studies, this study tries to construct sentiment dictionary which is customized to specific data domain. Using a common sentiment dictionary for sentiment analysis without considering data domain characteristic cannot reflect contextual expression only used in the specific data domain. So, we can expect using a modified sentiment dictionary customized to data domain can lead the improvement of sentiment analysis efficiency. Therefore, this study aims to suggest a way to construct customized dictionary to reflect characteristics of data domain. Especially, in this study, movie review data are divided by genre and construct genre-customized dictionaries. The performance of customized dictionary in sentiment analysis is compared with a common sentiment dictionary. In this study, IMDb data are chosen as the subject of analysis, and movie reviews are categorized by genre. Six genres in IMDb, 'action', 'animation', 'comedy', 'drama', 'horror', and 'sci-fi' are selected. Five highest ranking movies and five lowest ranking movies per genre are selected as training data set and two years' movie data from 2012 September 2012 to June 2014 are collected as test data set. Using SO-PMI (Semantic Orientation from Point-wise Mutual Information) technique, we build customized sentiment dictionary per genre and compare prediction accuracy on review rating. As a result of the analysis, the prediction using customized dictionaries improves prediction accuracy. The performance improvement is 2.82% in overall and is statistical significant. Especially, the customized dictionary on 'sci-fi' leads the highest accuracy improvement among six genres. Even though this study shows the usefulness of customized dictionaries in sentiment analysis, further studies are required to generalize the results. In this study, we only consider adjectives as additional terms in customized sentiment dictionary. Other part of text such as verb and adverb can be considered to improve sentiment analysis performance. Also, we need to apply customized sentiment dictionary to other domain such as product reviews.

A Study on Shaker's Free Design from Fashion (유행(流行)으로부터 자유로운 세이커(Shaker) 디자인에 대한 고찰)

  • Choi, Sung-Woon;Huh, Jin
    • Archives of design research
    • /
    • v.20 no.3 s.71
    • /
    • pp.279-288
    • /
    • 2007
  • Today, design is not free from fashion, which emerges and vanishes temporarily, and aims at equalization. As a result, products quickly become obsolete because of fashion. This means that the span of products is determined by a social concept, which is not clarified, regardless of their functions. Usable products will gradually disappear from us and it will cause serious environmental problems, unless we can find out measures against fashion. As such, it is important to study the characteristics of the shaker's design in this circumstance. The Shaker's community has a distinguishable difference from other general societies. Temporary fashion and misled information cannot interfere with their consciousness. Religion, the life and the principle of design have developed on the same level in their community. Especially, any decoration or the difference of materials is not allowed in shaker's design. It reflects their thinking that all people are equal in the sight of God. Therefore, any decoration for social and economical superiority can not be used. Through this consciousness, they can be free from fashion or decoration. They, also, believe that they can reach perfection through practicality and simplicity. The reason why shaker's design is not disturbed by fashion is that their belief is involved in their design. Consequently, if religious or conscious contents are primarily set up, design can be free from fashion and products can be used for a long time.

  • PDF

Fabrication of Portable Self-Powered Wireless Data Transmitting and Receiving System for User Environment Monitoring (사용자 환경 모니터링을 위한 소형 자가발전 무선 데이터 송수신 시스템 개발)

  • Jang, Sunmin;Cho, Sumin;Joung, Yoonsu;Kim, Jaehyoung;Kim, Hyeonsu;Jang, Dayeon;Ra, Yoonsang;Lee, Donghan;La, Moonwoo;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.249-254
    • /
    • 2022
  • With the rapid advance of the semiconductor and Information and communication technologies, remote environment monitoring technology, which can detect and analyze surrounding environmental conditions with various types of sensors and wireless communication technologies, is also drawing attention. However, since the conventional remote environmental monitoring systems require external power supplies, it causes time and space limitations on comfortable usage. In this study, we proposed the concept of the self-powered remote environmental monitoring system by supplying the power with the levitation-electromagnetic generator (L-EMG), which is rationally designed to effectively harvest biomechanical energy in consideration of the mechanical characteristics of biomechanical energy. In this regard, the proposed L-EMG is designed to effectively respond to the external vibration with the movable center magnet considering the mechanical characteristics of the biomechanical energy, such as relatively low-frequency and high amplitude of vibration. Hence the L-EMG based on the fragile force equilibrium can generate high-quality electrical energy to supply power. Additionally, the environmental detective sensor and wireless transmission module are composed of the micro control unit (MCU) to minimize the required power for electronic device operation by applying the sleep mode, resulting in the extension of operation time. Finally, in order to maximize user convenience, a mobile phone application was built to enable easy monitoring of the surrounding environment. Thus, the proposed concept not only verifies the possibility of establishing the self-powered remote environmental monitoring system using biomechanical energy but further suggests a design guideline.

X-tree Diff: An Efficient Change Detection Algorithm for Tree-structured Data (X-tree Diff: 트리 기반 데이터를 위한 효율적인 변화 탐지 알고리즘)

  • Lee, Suk-Kyoon;Kim, Dong-Ah
    • The KIPS Transactions:PartC
    • /
    • v.10C no.6
    • /
    • pp.683-694
    • /
    • 2003
  • We present X-tree Diff, a change detection algorithm for tree-structured data. Our work is motivated by need to monitor massive volume of web documents and detect suspicious changes, called defacement attack on web sites. From this context, our algorithm should be very efficient in speed and use of memory space. X-tree Diff uses a special ordered labeled tree, X-tree, to represent XML/HTML documents. X-tree nodes have a special field, tMD, which stores a 128-bit hash value representing the structure and data of subtrees, so match identical subtrees form the old and new versions. During this process, X-tree Diff uses the Rule of Delaying Ambiguous Matchings, implying that it perform exact matching where a node in the old version has one-to one corrspondence with the corresponding node in the new, by delaying all the others. It drastically reduces the possibility of wrong matchings. X-tree Diff propagates such exact matchings upwards in Step 2, and obtain more matchings downwsards from roots in Step 3. In step 4, nodes to ve inserted or deleted are decided, We aldo show thst X-tree Diff runs on O(n), woere n is the number of noses in X-trees, in worst case as well as in average case, This result is even better than that of BULD Diff algorithm, which is O(n log(n)) in worst case, We experimented X-tree Diff on reat data, which are about 11,000 home pages from about 20 wev sites, instead of synthetic documets manipulated for experimented for ex[erimentation. Currently, X-treeDiff algorithm is being used in a commeercial hacking detection system, called the WIDS(Web-Document Intrusion Detection System), which is to find changes occured in registered websites, and report suspicious changes to users.

Introduction of region-based site functions into the traditional market environmental support funding policy development (재래시장 환경개선 지원정책 개발에서의 지역 장소적 기능 도입)

  • Jeong, Dae-Yong;Lee, Se-Ho
    • Proceedings of the Korean DIstribution Association Conference
    • /
    • 2005.05a
    • /
    • pp.383-405
    • /
    • 2005
  • The traditional market is foremost a regionally positioned place, wherein the market directly represents regional and cultural centered traits while it plays an important role in the circulation of facilities through reciprocal, informative and cultural exchanges while sewing to form local communities. The traditional market in Korea is one of representative retail businesses and premodern marketing techniques by family owned business of less than five members such as product management, purchase method, and marketing patterns etc. Since the 1990s, the appearance of new circulation-type businesses and large discount convenience stores escalated the loss of traditional competitiveness, increased the living standard of customers, changed purchasing patterns, and expanded the ubiquity of the Internet. All of these changes in external circulation circumstances have led the traditional markets to lose their place in the economy. The traditional market should revive on a regional site basis through the formation of a community of regional neighbors and through knowledge-sharing that leads to the creation of wealth. For the purpose of creating a wealth in a place, the following components are necessary: 1) a facility suitable for the spatial place of the present, 2)trust built through exchanges within the changing market environment, which would simultaneously satisfy customer's desires, 3) international bench marking on cases such as regionally centered TCM (England), BID (USA), and TMO (Japan) so that the market unit of store placement transfers from a spot policy to a line policy, 4)conversion of communicative conception through a surface policy approach centered around a macro-region perspective. The budget of the traditional market funding policy was operational between 2001 and 2004, serving as a counter move to solve the problem of the old traditional market through government intervention in regional economies to promote national economic strength. This national treasury funding project was centered on environmental improvement, research corps, and business modernization through the expenditure of 3,853 hundred million won (Korean currency). However, the effectiveness of this project has yet to be to proven through investigation. Furthermore, in promoting this funding support project, a lack of professionalism among merchants in the market led to constant limitations in comprehensive striving strategies, reduced capabilities in middle-and long-term plan setup, and created reductions in voluntary merchant agreement solutions. The traditional market should go beyond mere physical place and ordinary products creative site strategies employing the communicative approach must accompany these strategies to make the market a new regional and spatial living place. Thus, regarding recent paradigm changes and the introduction of region-based site functions into the traditional market, acquiring a conversion of direction into the newly developed project is essential to reinvestigate the traditional market composed of cultural and economic meanings, for the purpose of the research. Excavating social policy demands through the comparative analysis of domestic and international cases as well as innovative and expert management leadership development for NPO or NGO civil entrepreneurs through advanced case research on present promotion methods is extremely important. Discovering the seeds of the cultural contents industry cored around regional resource usages, commercializing regionally reknowned products, and constructing complex cultural living places for regional networks are especially important. In order to accelerate these solutions, a comprehensive and systemized approach research operated within a mentor academy system is required, as research will reveal distinctive traits of the traditional market in the aging society.

  • PDF

Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Mode (CNN-LSTM 조합모델을 이용한 영화리뷰 감성분석)

  • Park, Ho-yeon;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.141-154
    • /
    • 2019
  • Rapid growth of internet technology and social media is progressing. Data mining technology has evolved to enable unstructured document representations in a variety of applications. Sentiment analysis is an important technology that can distinguish poor or high-quality content through text data of products, and it has proliferated during text mining. Sentiment analysis mainly analyzes people's opinions in text data by assigning predefined data categories as positive and negative. This has been studied in various directions in terms of accuracy from simple rule-based to dictionary-based approaches using predefined labels. In fact, sentiment analysis is one of the most active researches in natural language processing and is widely studied in text mining. When real online reviews aren't available for others, it's not only easy to openly collect information, but it also affects your business. In marketing, real-world information from customers is gathered on websites, not surveys. Depending on whether the website's posts are positive or negative, the customer response is reflected in the sales and tries to identify the information. However, many reviews on a website are not always good, and difficult to identify. The earlier studies in this research area used the reviews data of the Amazon.com shopping mal, but the research data used in the recent studies uses the data for stock market trends, blogs, news articles, weather forecasts, IMDB, and facebook etc. However, the lack of accuracy is recognized because sentiment calculations are changed according to the subject, paragraph, sentiment lexicon direction, and sentence strength. This study aims to classify the polarity analysis of sentiment analysis into positive and negative categories and increase the prediction accuracy of the polarity analysis using the pretrained IMDB review data set. First, the text classification algorithm related to sentiment analysis adopts the popular machine learning algorithms such as NB (naive bayes), SVM (support vector machines), XGboost, RF (random forests), and Gradient Boost as comparative models. Second, deep learning has demonstrated discriminative features that can extract complex features of data. Representative algorithms are CNN (convolution neural networks), RNN (recurrent neural networks), LSTM (long-short term memory). CNN can be used similarly to BoW when processing a sentence in vector format, but does not consider sequential data attributes. RNN can handle well in order because it takes into account the time information of the data, but there is a long-term dependency on memory. To solve the problem of long-term dependence, LSTM is used. For the comparison, CNN and LSTM were chosen as simple deep learning models. In addition to classical machine learning algorithms, CNN, LSTM, and the integrated models were analyzed. Although there are many parameters for the algorithms, we examined the relationship between numerical value and precision to find the optimal combination. And, we tried to figure out how the models work well for sentiment analysis and how these models work. This study proposes integrated CNN and LSTM algorithms to extract the positive and negative features of text analysis. The reasons for mixing these two algorithms are as follows. CNN can extract features for the classification automatically by applying convolution layer and massively parallel processing. LSTM is not capable of highly parallel processing. Like faucets, the LSTM has input, output, and forget gates that can be moved and controlled at a desired time. These gates have the advantage of placing memory blocks on hidden nodes. The memory block of the LSTM may not store all the data, but it can solve the CNN's long-term dependency problem. Furthermore, when LSTM is used in CNN's pooling layer, it has an end-to-end structure, so that spatial and temporal features can be designed simultaneously. In combination with CNN-LSTM, 90.33% accuracy was measured. This is slower than CNN, but faster than LSTM. The presented model was more accurate than other models. In addition, each word embedding layer can be improved when training the kernel step by step. CNN-LSTM can improve the weakness of each model, and there is an advantage of improving the learning by layer using the end-to-end structure of LSTM. Based on these reasons, this study tries to enhance the classification accuracy of movie reviews using the integrated CNN-LSTM model.

Predicting the Direction of the Stock Index by Using a Domain-Specific Sentiment Dictionary (주가지수 방향성 예측을 위한 주제지향 감성사전 구축 방안)

  • Yu, Eunji;Kim, Yoosin;Kim, Namgyu;Jeong, Seung Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.1
    • /
    • pp.95-110
    • /
    • 2013
  • Recently, the amount of unstructured data being generated through a variety of social media has been increasing rapidly, resulting in the increasing need to collect, store, search for, analyze, and visualize this data. This kind of data cannot be handled appropriately by using the traditional methodologies usually used for analyzing structured data because of its vast volume and unstructured nature. In this situation, many attempts are being made to analyze unstructured data such as text files and log files through various commercial or noncommercial analytical tools. Among the various contemporary issues dealt with in the literature of unstructured text data analysis, the concepts and techniques of opinion mining have been attracting much attention from pioneer researchers and business practitioners. Opinion mining or sentiment analysis refers to a series of processes that analyze participants' opinions, sentiments, evaluations, attitudes, and emotions about selected products, services, organizations, social issues, and so on. In other words, many attempts based on various opinion mining techniques are being made to resolve complicated issues that could not have otherwise been solved by existing traditional approaches. One of the most representative attempts using the opinion mining technique may be the recent research that proposed an intelligent model for predicting the direction of the stock index. This model works mainly on the basis of opinions extracted from an overwhelming number of economic news repots. News content published on various media is obviously a traditional example of unstructured text data. Every day, a large volume of new content is created, digitalized, and subsequently distributed to us via online or offline channels. Many studies have revealed that we make better decisions on political, economic, and social issues by analyzing news and other related information. In this sense, we expect to predict the fluctuation of stock markets partly by analyzing the relationship between economic news reports and the pattern of stock prices. So far, in the literature on opinion mining, most studies including ours have utilized a sentiment dictionary to elicit sentiment polarity or sentiment value from a large number of documents. A sentiment dictionary consists of pairs of selected words and their sentiment values. Sentiment classifiers refer to the dictionary to formulate the sentiment polarity of words, sentences in a document, and the whole document. However, most traditional approaches have common limitations in that they do not consider the flexibility of sentiment polarity, that is, the sentiment polarity or sentiment value of a word is fixed and cannot be changed in a traditional sentiment dictionary. In the real world, however, the sentiment polarity of a word can vary depending on the time, situation, and purpose of the analysis. It can also be contradictory in nature. The flexibility of sentiment polarity motivated us to conduct this study. In this paper, we have stated that sentiment polarity should be assigned, not merely on the basis of the inherent meaning of a word but on the basis of its ad hoc meaning within a particular context. To implement our idea, we presented an intelligent investment decision-support model based on opinion mining that performs the scrapping and parsing of massive volumes of economic news on the web, tags sentiment words, classifies sentiment polarity of the news, and finally predicts the direction of the next day's stock index. In addition, we applied a domain-specific sentiment dictionary instead of a general purpose one to classify each piece of news as either positive or negative. For the purpose of performance evaluation, we performed intensive experiments and investigated the prediction accuracy of our model. For the experiments to predict the direction of the stock index, we gathered and analyzed 1,072 articles about stock markets published by "M" and "E" media between July 2011 and September 2011.

Changes in Agricultural Extension Services in Korea (한국농촌지도사업(韓國農村指導事業)의 변동(變動))

  • Fujita, Yasuki;Lee, Yong-Hwan;Kim, Sung-Soo
    • Journal of Agricultural Extension & Community Development
    • /
    • v.7 no.1
    • /
    • pp.155-166
    • /
    • 2000
  • When the marcher visited Korea in fall 1994, he was shocked to see high rise apartment buildings around the capitol region including Seoul and Suwon, resulting from rising demand of housing because of urban migration followed by second and third industrial development. After 6 years in March 2000, the researcher witnessed more apartment buildings and vinyl house complexes, one of the evidences of continued economic progress in Korea. Korea had to receive the rescue finance from International Monetary Fund (IMF) because of financial crisis in 1997. However, the sign of recovery was seen in a year, and the growth rate of Gross Domestic Products (GDP) in 1999 recorded as high as 10.7 percent. During this period, the Korean government has been working on restructuring of banks, enterprises, labour and public sectors. The major directions of government were; localization, reducing administrative manpower, limiting agricultural budgets, privatization of public enterprises, integration of agricultural organization, and easing of various regulations. Thus, the power of central government shifted to local government resulting in a power increase for city mayors and county chiefs. Agricultural extension services was one of targets of government restructuring, transferred to local governments from central government. At the same time, the number of extension offices was reduced by 64 percent, extension personnel reduced by 24 percent, and extension budgets reduced. During the process of restructuring, the basic direction of extension services was set by central Rural Development Administration Personnel management, technology development and supports were transferred to provincial Rural Development Administrations, and operational responsibilities transferred to city/county governments. Agricultural extension services at the local levels changed the name to Agricultural Technology Extension Center, established under jurisdiction of city mayor or county chief. The function of technology development works were added, at the same time reducing the number of educators for agriculture and rural life. As a result of observations of rural areas and agricultural extension services at various levels, functional responsibilities of extension were not well recognized throughout the central, provincial, and local levels. Central agricultural extension services should be more concerned about effective rural development by monitoring provincial and local level extension activities more throughly. At county level extension services, it may be desirable to add a research function to reflect local agricultural technological needs. Sometimes, adding administrative tasks for extension educators may be helpful far farmers. However, tasks such as inspection and investigation should be avoided, since it may hinder the effectiveness of extension educational activities. It appeared that major contents of the agricultural extension service in Korea were focused on saving agricultural materials, developing new agricultural technology, enhancing agricultural export, increasing production and establishing market oriented farming. However these kinds of efforts may lead to non-sustainable agriculture. It would be better to put more emphasis on sustainable agriculture in the future. Agricultural extension methods in Korea may be better classified into two approaches or functions; consultation function for advanced farmers and technology transfer or educational function for small farmers. Advanced farmers were more interested in technology and management information, while small farmers were more concerned about information for farm management directions and timely diffusion of agricultural technology information. Agricultural extension service should put more emphasis on small farmer groups and active participation of farmers in these groups. Providing information and moderate advice in selecting alternatives should be the major activities for consultation for advanced farmers, while problem solving processes may be the major educational function for small farmers. Systems such as internet and e-mail should be utilized for functions of information exchange. These activities may not be an easy task for decreased numbers of extension educators along with increased administrative tasks. It may be difficult to practice a one-to-one approach However group guidance may improve the task to a certain degree.

  • PDF