1.

Nowadays, most information i1s being provided through

X-tree Diff - E2| 712l QIOIHE 91T EHY g BAl Z02I8

X-tree Diff : EZ] 7|4t dlo]H & 3t
ge49 W3 &x &ygF

o &4 #'-Z4 & of"

2 o

e Aol &R Z71ke el XML/HTML £419F #e] Eg] 722 H¥5H = dolHe] ¥8 A7) $88 A7 #ok2 §343t
2tk B =EdAE 449 W3 g8 A% diojy 722 X-treed} oo 7)%% FElsd W3 Bx gulE X-tree DiffS AR
ok X-tree Diff= X-tree®] 2k W&ol ek 4 w8 HY 23geE F& d1Fde 29 Fo2d 2 o 2n5E 54 98
Hee $lske dugEez, X-treed] 8 RE o g Ao =28 FERZ st HBEY T2 HEEFH 4% =59 4
g 128“]E HAFoE FEH A Edl MDE 7 ==o AYsta, ol W3 &4 Ao 8838t A-7 WA X-treeSel *‘ﬂ
*1EEala4 Alug g&¥o2 At X-tree Diffs 4 @AZ 7™ O A-7 949 X-tree ==59) s, 4 1:1 &l 7+5

RE T MBEY &S 21, @ ol AHED B9 FEZNE A-F i X-weed] FEAAY HE Pol EAQE =8 EH
SHAE AT @ 1 F A-F HAHY X-tree®] FEEZRH o] ¢4 402 w28 RS fgo] AAHRA 2& BB oid
e ARE AR @ s GA] o Ryt AAHA] e REES b A9E Rog FAT X-tree Diffes XML A48
o & H]%i‘?}(Verswnmg Exoz MAE BULD Diff ¢uaZ3 g2 XML/HTMLY F5AHoZ A48 & & # oy, diugEo)
Wasty HEste ook E*EJH o] 7hsdith duEZEe ASE AN A-F X-treed ==9] +F nold 3 w, 09 A 2
5 Zeth Add 2dugEe d4 2ok §d 48 A29e WIDS(Web-Document Intrusion Detection System)oll A AMgElz glon, B
=R WIDSE o] &3ty 20°17ﬁ AE-E Alo|Eo A Walz} gxE 11,0007 Holx|o] i FsHE7tE Rolxm 9lh

X-tree Diff : An Efficient Change Detection Algorithm
for Tree-structured Data

Suk Kyoon Lee'- Dong Ah Kim'™

ABSTRACT

We present X-tree Diff, a change detection algorithm for tree-structured data. Our work is motivated by the need to monitor massive volume
of web documents and detect suspicious changes, called defacement attack on web sites. From this context, our algorithm should be very efficient
in speed and use of memory space. X-tree Diff uses a special ordered labeled tree, X-tree, to represent XML/HTML documents. X-tree nodes
have a special field, tMD, which stores a 128-bit hash value representing the structure and data of subtrees, so that it compares between
subtrees efficiently. X-tree Diff, supporting four basic operations (insert, delete, update, and move), uses tMD fields to match identical subtrees
from the old and new versions. During this process, X-tree Diff uses the Rule of Delaying Ambiguous Matchings, implying that it perform
exact matchings where a node in the old version has one-to-one correspondence with the corresponding node in the new, by delaying all the
others. It drastically reduces the possibility of wrong matchings. X-tree Diff propagates such exact matchings upwards in Step 2, and obtain
more matchings downwards from roots in Step 3. In Step 4, nodes to be inserted or deleted are decided. We also show that X-tree Diff runs
in O(n), where n is the number of nodes in X-trees, in worst case as well as in average case. This result is even better than that of BULD
Diff algorithm, which is O(n log(n)) in worst case. We experimented X-tree Diff on real data, which are about 11,000 home pages from about
20 web sites, instead of synthetic documents manipulated for experimentation. Currently, X-tree Diff algorithm is being used in a commercial
hacking detection system, called the WIDS (Web-Document Intrusion Detection System), which is to find changes occurred in registered
websites, and report suspicious changes to users.

7|19= : 88l EX|(Change Detection), Diff, E2} FX(Tree Structured Data). [H&(Matching)

Introduction WWW. As the need to access up-to-date information at

right moment has been drastically increased, the technology

% The present research was conducted by the research fund of Dankook

University in 2002,]
A g 8l dadistu HRE A wp markets as soon as they are released. Salesmen may be inte-

tt

4 3l 40 agase

of detecting changes occurring in web documents in real-
time becomes indispensable. For example, stock analysts may
want to access news and economic articles affecting stock

SRR 008 79 49, AARE 20039 99 199 rested in monitoring prices of products sold by competitors,

B84 FEHASDIERAC NGO Mbw 20usa0!

and so on. Change detection technology is also useful for
areas of version management [1, 2], data warehouse [3], and
active databases [4].

Even though the needs for effective change detection te
chnologies are increasing, researches on these technologies
for tree-structured data are far from satisfactory. In this pa-
per, we propose X-tree Diff, heuristic algorithm for detecting
changes in tree-structured data, whichis O(#») in time com—

plexity, where is » the number of nodes.

1.1 Background

The problem on change detection has been studied since
1970s, and early works on this problem has focused on ge-
nerating the minimal cost edit operations based on the dis-
tance between text files [5, 6]. R.Wagner et. al. proposed the
‘compare’ algorithm [23] which, based on DAG, produce the
minimal cost edit script for two strings x, y. However, the
cost is proportional to O(x|x|y|), where | x| means the
length of string x. The famous program for change detection
in plain text files may be GNU diff utility, which has been
implemented based on LCS (Longest Common Subsequence)
algorithm [5], and is being used in CVS utility (6], the version
management system for programs.

Researches on change detection for tree-structured data
have been carried out since late 1970s {8-17]. Early works
focused on the computation of the minimal cost edit script
for tree-structured data [8-10]. Selkow’s algorithm conside-
red trees of depth two, where insertion and deletion can oc-
curs only in leaf nodes [8]. Tai presented an algorithm pro-
ducing the minimal cost edit script for ordered labeled trees,
which is known as the first non-exponential algorithm [9].

Recently, as uses of tree-structured data such XML/HTML
documents are increasing rapidly, due to the explosive gro-
wth of uses of internet, the problem on the change detection
for tree-structured data draws much attention from research
community [11-17]. The general problem on change detec~
tion for tree-structured data is known as NP-hard [12]. So,
many recent works proposed heuristic solutions instead of
optimal ones.

Zhang and Shasha proposed a fast algorithm to find the
minimum cost editing distance between two ordered labeled
trees [18]. Given two ordered trees T and T, their algorithm
finds a minimal edit script in time O T, | x| Tyl x min{depth

(T,), leaves(Ty)} x min{ depth(T,), leaves(T»)}), where | T,

depth(7), and leaves(T) represent the number of nodes, the

depth, and the number of leaves in 7, respectively. Chawathe
et. al,, also, proposed an efficient algorithm, called MH -Diff.
In MH-Diff, the change detection problem is transformed
to the problem of computing a minimum-cost edge cover
of a bipartite graph [12]. However, the worst case of algo-
rithm is O(#*) in time complexity, where n is the number
of nodes.

To improve the performance, recent works often use hash
values to represent the contents and structure of subtrees
for the efficient comparison of subtrees [15-17, 19]. XMLTree
Diff) applies Zhang and Shasha’s algorithm [18] to detect
changes in XML documents. It also uses hash values of sub-
trees to prune identical subtrees [15].

BULD Diff 2 algorithm [16}, based on both Lu’s and Sel~
kow's algorithms [8, 10], is designed for XML data warehou-
se and versioning. This algorithm uses 32-bit hash values
(called a signature) to represent the contents and structure
of subtrees, and the notion of weight (i.e., a number of sub-
tree nodes) for matching process. It achieves O(# log n) com-
plexity in execution time, using hashing and heuristic tech-
niques.

X-Diff+3 [17], based on the unordered tree model, also
uses modified DOMHash [19] to represent the contents and
structure of subtrees. Using the insert, delete, and update
operations, and their cost functions, X-Diff+ computes the
edit distance between two documents, and produce reason-
able good edit scripts with time cost of O(T\ 1% | Tz| < max{

deg (T,), deg (T3))} % logy {deg (T)), deg (T3)}) In worst
case, where deg(T) represents the maximum out-degree in

tree T.

1.2 Motivations and Characteristics of X-tree Diff

One of hot issues on internet security is on defacing web
sites. In these days, it is not strange to hear about hackers’
defacement attacks to major web sites. One of sclutions to
this problem is to monitor home pages of web sites to see
if defacement attacks occur, and notify attacks to operators,
if suspicious changes detected, in order for them to cope with
the situation properly.

This work is motivated by the need to monitor a huge
amount of HTML documents, and detect changes in those

documents in real-time. Change detection algorithms to be

1) Available at http://www.alphaworks.ibm.com/tech/xmltreediff.
2) Available at http://www-rocq.inriafr/ cobena/cdromy/www/xydiff/eng htm.
3) Available at http://www.cs.wisc.edw/ ™ yuanwang/xdiff.html.

used in such systems should satisfy the following properties

 efficiency, quality and extensibility. These algorithms sho-
uld be fast enough to handle malign defacement attacks in
real-time, and also produce reasonable good quality of out-
put. The algorithms may be extensible in various ways, in
order to meet needs from different applications. For example,
users may want to have intelligent change detection systems
capable of distinguishing malign changes from routine chan-
ges, and so on.

However, most existing algorithms are not fast enough.
BULD Diff algorithm, which is known as fastest among ex-
isting algorithms, runs in time O(x log) in worst case.
Also, BULD Diff is so complex that it is not easy to un-
derstand and is difficult to extend. It is claimed that the
output is reasonable close to “optimal.” But, according to a
recent report, the quality of the output in some cases is not
good enough [17].

In this paper, we propose X-tree Diff, the algorithm desi-
gned to detect changes in tree-structured data such as XML/
HTML documents. In X-tree Diff, we use X-tree, similar
to the structure of the Document Object Model (DOM) [22],
to represent XML/HTML documents. X-tree are labeled or-
dered trees, designed to easily derive the distance 4 between
two tree-structured documents.

X-tree Diff is fast, reliable, simple and clear change detec-
tion algorithm. X-tree Diff runs fast in time cost O(») in
worst case, which is even faster than BULD Diff algorithm.
We use 128-bit hash values, in matching nodes, which are
generated from the Message Digest algorithm (MD4) [20],
known as balanced and reliable in computer security area.
Because of using MD4 as hash function in X-tree Diff, ma-
tching process in X-tree Diff is more reliable than any other
algorithms using hashing, so that the possibility of wrong
matchings may be reduced. In X-tree Diff, we also use the
Rule of Delaying Ambiguous Matchings. It implies that,
during matching process, X -tree Diff performs exact match-
ings where a node in the old version has one-to-one corre-
spondence with the corresponding node in the new, by dela-
ying all the others. It reduces the possibility of wrong ma-
tchings. X-tree Diff propagates such exact matchings up-
wards in Step 2, and obtain more matchings downwards
from roots in Step 3. In Step 4, nodes to be inserted or deleted
are decided.

Since August in 2002, X-tree Diff has been being used

4) The distance may be interpreted as the notion of delta in [16].

X-tree Diff - E2] 7|Et HIOIHE I8 28X Wigl ©X el

al

685

in a commercial hacking detection system, called the WIDS
(Web-Document Intrusion Detection System). About 700
web sites and over 7000 web pages form these web sites
are registered to WIDS, and being monitored every 5 to 20
minutes. One last characteristics of X-tree Diff is simplicity.
In comparing with other existing algorithms, the structure
of X-tree Diff is simple and clear, so that it can be extended
easily.

In the rest of the paper, we present the change represen—
tation model in Section 2. In Section 3, we describe our X-
tree Diff algorithm in detail. We analyze X-tree Diff and are
showing experiments in Section 4. The last section a con-

clusion and future work.

2. The Model for Representing Changes in XML
Documents

In this section, we propose the notion of X-tree, which
represents a XML document as a tree. X-tree is a core data
structure used in X-tree Diff algorithm to represent changes
in XML documents. We, then, introduce the notions of Node_
MD and Tree_MD in Section 2.2. The notion of Node_MD
is used to represent the information stored in a node of
X-tree, while the notion of Tree_MD to represent infoma—
tion stored in a subtree of X-tree. In Section 2.3, we define
the basic edit operations used to describe the changes bet-

ween two X-trees.

2.1 X-tree

X-tree is a labeled ordered tree, designed to reflect the
hierarchical structure of XML documents. In addition to fie-
Ids used to maintain the tree structure, a node of X-tree
consists of eight fields shown in (Figure 1). Among these
fields, Label, Type and Value fields altogether represent an
element of XML documents. Index field is used to disti-
nguish sibling nodes in X-tree that have the same label,
while nMD, tMD, nPtr and Op fields to detect changes in
X-tree Diff.

Label | Type | Value | Index | nMD tMD nPtr Op

(Figure 1) Logical structure of a node of X-tree.

First, we describe how to represent an XML document
in X-tree. The node of X-tree represents either the element
node or text node (PCDATA) in DOM (Document Object
Model) [22]. For each-text node of an XML document, the

686 HRMNRAB =X C HI0-CH MEZ (200310

string “4TEXT” and the text content of the node are stored,
respectively, in the Label field and Value field of the cor-
responding X-tree node. For each element node, the name
of the node is stored in the Label field of the corresponding
node.

In this paper, for simplicity and clarity of exposition, we
decide not to represent the attribute nodes of DOM in X-tree.
However, extending our model to include the attribute nodes
is not difficult. We can use element nodes in a restricted
way to represent attribute nodes®, or use the Value field
to represent the name and contents of all the attributes. We
took the second approach for X-tree Diff used in experi-
ments shown in Section 4.

For X-tree sibling nodes whose Label fields have the same
value, their Index fields are set to the numbers such as 1,
2, 3, -, according to the left-to-right order to distinguish
these sibling nodes. The number 1 is used as the default
value for the others. For the simplicity of writing, we assume
that field names also are treated as functions. For example,
Label(N) denotes the value of the Label field of an X-tree
node N.

<Category>
<Title> LCD Monitor </Title>
<Discount>
<Product>
<Name> 782LE </Name>
<Price> 875000 </Price>
</Product> </Discount>
<New Products>
<Product>
<Name> 577CM </Name>
<Price> 755,000 </Price></Product>
<Product>
<Name> 575LS </Name>>
<Price> 625,000 </Price></Product>
</New Products>

L, </Category> _J

(Figure 2) A piece of XML document

Consider an XML document in (Figure 2), which represe-
nts a catalog in XML. In (Figure 3), we show a simplified
X-tree for the XML document. The label of a node in (Figure
3), which is used to identify a node, comes from the values
of the Label and Index fields. However, for the notational
simplicity, the first character of the string value of the Label
field is used for the labels of nodes. For example, the <Ca-
tegory> element in (Figure 2) is represented by the root node
‘Cl1Y in (Figure 3), and the second <Product> element of

5) BULD Diff {16] and X-Diff+ [17] took the similar approach to represent
attributes.

the <New Products> element by the node ‘P[2] that is the
second child of ‘N[1J'. As seen above, nodes of X-tree can
be identified by the value combined from the Label and Index
fields. These values are called ILabel (indexed label) and
defined as ILabel(N) = Label(N)Index({N)] for an X-tree
node .

(Figure 3) An X-tree representation

By the notion of ILabel, we can distinguish all the sibling
nodes with a same parent, but fail to uniquely identifying
all the individual nodes in X-tree. So, we introduce the notion
of nID (node identifier) which is defined by extending the
notion of ILabel along the tree path. For a node Np in an
X-tree 7, the nID value of node Np is defined as the con-
catenation of all the ILabel strings of nodes along the path
from the root Nr to the node Np. Formally it is defined as
follows : nID (Np) = Label (Nr) [Index (Nr)]., -, Label (Np)
[Index (Np)]. For example, the nID of the <Category> ele-
ment in (Figure 2) is C{1], and the nID of the second child
<Product> element of the <New Products> element is
“CIINI[11P(2].

2.2 Node_MD and Tree_MD

Detecting changes in two XML documents requires com-
parison between two X-trees Toq and Thew, converted from
them. For efficient comparison between X-Trees, X-tree
Diff uses the hash algorithm MD4 6) [20, 21] to produce hash
values for nodes and subtrees. These hash values are called
Node_MDs and Tree_MDs. The Node_MD of a node N is

6) MD4 is a reliable hash algorithm for our purpose. It is conjectured that
it is computationally infeasible to produce two messages having the sa-
me message digest, or to produce any message having a given prespe-
cified target message digest.

the hash value from applying the MD4 hash function to the
contents of the node N. After being computed, the Node_MD
is stored in the nMD field of node N. Node_MD is defined

as follows.

Node_MD : The Node_MD of a node N is a 32-byte string
value, which results from applying MD4 hash
function to the concatenation of the values of
the Label and Value field of the node N. The
Node_MD is defined formally using nMD as fol-
lows :

nMD (N) = string (MD4 (Label (N) & Value (N)))

where @ is a string concatenating operator, and string(h)
is a function that receive an 128-bit hash value as the input
value, and returns 32-byte hexadecimal character string.

In order to compare two nodes, we simply compare their
Node_MDs, instead of the values of the Label, and Value
fields 7. When the Node_MD of a node A is equal to the
one of a node B, the nodes A and B are regarded as identical
to each other. Tree_MD represents a hash value for the con-
tents of an X-tree. The Tree_MD of an X-tree T is stored
in the Field tMD of the root node of the tree 7. The notion
of Tree_MD is defined as follows :

Tree_MD : The Tree_MD of a node N is recursively de—
fined based on the Node_MD of the node N and
Tree_MDs of children of the node N. The Tr-
ee_MD is defined precisely using nMD and tMD

as follows :
tMD(N) = string (MD4 (nMD (N) EE tMD (Child_i (N)))

where n is the number of child nodes, and Child_i (V)
returns ith child node of node N.

From now on, nMD (also, tMD) are used to represent both
the field name and Node_MD (also, Tree_MD). (Figure 4)
shows how nMD and tMD for nodes are computed in a sam-
ple X-tree, where node N; has only one child node Nk, also
a leaf node. Note that tMD(N,) is defined on both nMD(N;)
and tMD(N,) which, recursively, is defined on nMD(N).
Due to the recursive definition, the tMD of an X-tree con-
tains not only the structure of the tree, but also contents
of all the nodes in a tree. Therefore, if the roots of two X-

trees have the same tMD, these trees are assumed to be

7) If the names and values of attributes are stored in the Value field, Node
MD may be much more useful.

X-tree Diff : E2| 718t HIOIEE 21T 222 #Hyl @Al fag

ot
»
=X

identical.

node N, tMD (N)
= string (MD4 (nMD (V) & tMD (Ni)))
Title - string (MD4 {“4e24d5a5634830dd5h0c34dc94178477"

+d820db47ead75c2c2ff865099%06ec2db”))
= “7f93a5cfc361c87a20e6207322b05fca”
nMD (N))
- string (MD4 (Label (N;) € Value (N:)))
= string (MD4 (“Title")) = “4e24d5a5634830dd5b0c34dc4178477”

node N, tMD (Nk)

= string (MD4 (mMD (N)))
= string (MD4 (“b036233¢16b3c9c8c44165ech9814aae”))
= “d820db47ead75c2c2ffB65099%06ee2db"

nMD (Ny)

Vajuel(N,) = string (MD4 (Label (Ni) & Value (Ni)})

= string (MD4 (“4TEXT" + “LCD Monitor”))

LCD Monitor = “b036233e16b3c9c8c44165ech381 daae”

(Figure 4) An example of Node__MD and Tree_ MD

2.3 Edit Operations

When two X-trees are not identical, change detection al-
gorithms should find the difference between these trees. The
difference between X-trees can be described with a set of
edit operations. In this paper, we consider four basic edit
operations such as INS, DEL, UPD, and MOV.

For an X~tree T, these edit operations are defined as fol-
lows :

e DEL(nID(N)) : delete a node N from X-tree T. However,
we assume that the root of T cannot be deleted.

o INS(/, v, nID(N), i) : create a new node that has the value
[for the Label field and the value v for the Value field,
then insert the node to X-tree T as the ith child of node
N.

e UPD(nID(N), v) : update the Value field of a node N with
the value v.

o MOV(nID(N), nID(M), j) : move the subtree rooted at a
node N from 7, and make the subtree being the jth child
of M.

Note that nIDs are used in the definitions, instead of node
pointers. These are logical definitions, so that we can use
them in any change detection system. The set of edit opera-
tions in our model is similar to the one in BULD Diff al-
gorithm 8. In addition to operations above, we also use NOP
in X-tree Diff, which is a dummy operation for nodes with
no change occurred.

Changes in two XML documents can be viewed as the
difference between the old version and the new version. From

the functional view, applying an edit operation to an X-tree

8) BULD Diff algorithm supports the same set of operations. However,
their insert and delete operations are applied to subtrees, instead of
nodes.

6688 BEMIFREFIC HIG-CH Mo 200310

will produce a new X -tree. Also, applying a sequence of edit
operations to the old version of an X-tree means trans

forming the old version, through a sequence of temporary
versions, to the new version. From this viewpoint, changes
in XML documents can be represented by a list of edit ope-

rations.

3. X-Tree Diff : Change Detection Algorithm

In this section, we introduce X-tree Diff, the change de-
tection algorithm, which matches nodes from two X-trees
and finally compute the difference. In Section 3.1, we des-
cribe the outline of the X-tree Diff algorithm. In Section 3.2,
we discuss about the preliminary step before X-tree Diff
begins, 1.e., how to initialize data structures used in X-tree
Diff as well as all the fields of X-tree nodes. At last, we

present detailed explanation on X-tree Diff in Section 3.3.

3.1 Overview

To begin with, we explain about the notion of matching.
Matching two nodes means that these nodes are made to
correspond to each other. It also implies that there is a proper
edit operation involved with these nodes, even though some-
times it is not mentioned explicitly. The edit operation may
be NOP, UPD, or MOV, depending on values of the nMD,

Label, and Value fields of nodes involved. We present some

definitions about the notion of matching. If an edit operation
e needs mentioning for a pair (N;, N;) of nodes being ma-
tched, it is said that that node N; and node N; are matched
using edit operation e. For the nodes N: and N;, and edit
operation e, a matching is represented by a tuple (N, N;)
or a triple (N;, Nj, e), depending on the context. The triple
(Ni, Nj, e) is often written as “the tuple (N;, N;) with e”.
Node N; is called the matching node of node Nj, and vice
versa. For example, if A is matched with B using NOP, it
may be written as (4, B, NOP)', or ‘(4, B) with NOP'. Also,
A is called a matching node of B.

The matching between two nodes can be often interpreted
as the matching between two trees, due to the existence of
tMD fields in X-trees. This extension is very useful to match
identical subtrees, since we can match two identical subtrees
by simply matching their roots using NOP.

Briefly speaking, X-tree Diff algorithm proceeds in the
following four steps. At first, it finds matchings with NOP
(i.e., pairs of matched identical subtrees) among all the pairs
of identical subtrees from 7o and Thew. Next, it propagates
these matchings upward to the root. In Step 3, downwards
from the roots, in depth-first order, it attempts to match
nodes from unmatched nodes in Tog and Thew. Finally, it de-
termines INS or DEL operations for nodes remaining unma-
tched up to this point, and generates a report to users.

These four steps are illustrated in (Figure 5). As shown

Step 4 1 DEL

Step 4 : INS

Step 1 : Match identical subtrees with 1-to—1 correspondence

Step 3 : Match remaining nodes downwards

(Figure 5) Tllustration of X-tree Diff algorithm

before, labels of text nodes begin with ‘#, while element
nodes do not. In the example, it is assumed that the Value
fields of the leftmost two text nodes remain unchanged, and
that of the third text node has been changed. We also assume
that the Label fields of all the other element nodes remain
unchanged except ones to be deleted or inserted. Before
explaining the algorithm in detail, we will sketch how the
algorithm works based on the example in (Figure 5).

In Step 1, the subtree rooted at “a{l1lb{1]c{l) of Tue is
matched with the subtree rooted at ‘.alllbl1].c[1] of Thew,
since they are identical subtrees. At Step 2, the matching
is propagated upwards to nodes of ‘.al[1].b[1]" of Tow and Thew,
and again, to nodes of ‘all]. Note that these nodes could
not be matched in Step 1, since some of their descendents
have been changed. In Step 3, other nodes are matched in
dept-first order, except two nodes to be deleted and inserted.
Detailed explanation will be provided later. Finally, the node
“al11b[11f[11h[1] of Twa is determined to be deleted, while
the node “.al1}.b{1}f[11i[1} of Thew to be inserted.

In the algorithm, information about matchings is stored
in the nPtr and Op fields of X-tree nodes. Specifically, in
the nPtr and Op fields of an X-tree node, the pointer of its
matching node and the name of edit operation involved in
the matching are stored, respectively. For example, in the
nPtr and Op fields of the node ‘.a[11.b[{1).f[1]4[1] of Tug, the
pointer of ‘al1]lb[11.f[11#17 of Tnew and the string “UPD”
are stored, respectively. Note that the name of edit operations
is stored in the Op fields.

3.2 Building X-trees and Hash Tables

In this section, we explain about the preprocessing step
for X-tree Diff. During the buildup of X-trees o and Thew
from XML documents, we generate two hash tables used

in later steps. We present detailed explanation.

Step 0 (Build up X-Trees) : In this step, we convert
XML documents into X-trees Tue and Thew, and generate
hash tables used in X-tree Diff. During this process, all the
Label, Index, and Value fields of X-tree nodes are properly
initialized. In addition, for each one of all the nodes from
Tog and Thew, its nPtr and Op fields are set to NULL, and
its nMD and tMD, after being computed, are stored in the
nMD and tMD fields, respectively.

During the preprocessing process, two hash tables O_Hta-
ble and N_Htable are generated. Entries for both N_Htable

X-tree Diff : E2| 712t HIOIHE #igt =Xl #4Y

on
Pl
S
[
Il
o
@
@
et

and O_Htable are of tuples consisting of the tMD and pointer
of a X~tree node, with tMD as the key. All the nodes with
unique tMD in Thew are registered to N_Htable, while all the
nodes with non-unique tMD in To are registered to O_Hta-
ble. These hash tables are used to match nodes with one-to-

one correspondence from Tuq t0 Thew in Step 1.

3.3 X-tree Diff Algorithm
As described before, X-tree Diff consists of four steps.

Step 1 (Match identical subtrees with 1-to—1 corres—
pondence) : In this step, we find pairs of identical subtrees
among all subtrees from Tui¢ and Thew, and match them using
NOP. Let a pair of matched identical subtrees be (ST,
SThew). When SToq and SThew are matched using NOP, all
the Op fields of nodes in ST and SThew are set to NOP,
and the nPtr field of each node in ST is set to the pointer

of the corresponding node in SThew, and vice versa.

The algorithm in (Figure 6) describes this process, in
detail. In the algorithm, NV and M represent the roots of sub-
trees in Ty and Thew, respectively. At the end, the algorithm
computes the list of matchings, called M_List, which is the
input data for Step 2. Note that, after finding a pair of ma-
tched nodes(a matching), we don’t visit their subtrees for
matching. It is obvious from the characteristics of tMD and
depth—first order traversal.

The first ‘If’ condition tests whether the tMD of node N
is unique in Tue and the second one tests whether there
exists some entry with the same tMD in N_Htable. These
conditions guarantees that tMD(N) and tMD(M) are unique
in T and Thew, respectively, and tMD(N) = tMD(M). Note
that all the nodes with unique tMD in T, are registered
to N_Htable, while all the nodes with non-unique tMD in
Toq are registered to O_Htable. Therefore, the pairs of no-
des (matchings) found in this process have one-to—one cor-
respondence. For a node N in Twg, if we attempt to match
the node N with a node in Thew, which has one-to-many
(or many-to-one) correspondence, then we might end up
with wrong matchings. The motivation behind this is @ un-
less matching between nodes is obvious, delay it until ambi~
guity in the matching disappears or until last moment for
the decision. This is called the Rule of Delaying Ambiguous
Matchings. 1t is why subtrees rooted at ‘.a[ll.b[1].c[1]’ in
Tow and Thee are matched in Step 1, and nodes whose TLabel

value is 'h{1] remain unmatched after Step 1 in (Figure 5).

690 BEXM2HB=EXC M10-CH M65 (200310

/* Visit each node of Tug in depth-first order */
For each node N in Tuu {
1If any entry of O_Htable does NOT have the same tMD value
that the node N has then {
If some entry of N_Htable has the same tMD value that
the node N has then {
Retrieve the node M from N_Htable ;
Match the nodes N and M using NOP ;
/+ also match corresponding their descendents */
Add the pair (N, M) of nodes to M_List ;
Stop visiting all the subtrees of the node N, then go
on to next node in 7o ;
}
Else
Go on to next node in Tog ;
}
Else
Go on to the next node in 7o ;
} // For

(Figure 6) Matching identical subtrees with one-to-one
correspondence

Step 2 (Propagate matchings upward) : In this step, we
propagate the matchings (i.e., pairs of matched subtrees)
found in Step 1 upward to the roots. The algorithm of Step
2 is provided in (Figure 7).

For each matching (A4, B) found in Step 1, let pA and pB
denote parents of A and B, respectively. Now, we decide
whether pA can be matched with pB. First, consider the case
that none of pA and pB have been matched. When Label
(pA) is equal to Label (pB), match pA and pB using NOP,
then continue to propagate the matchings toward their
parents. However, if Label (pA) is not equal to Label(pB),
match A and B using MOV, after revoking the previous
matching (A, B, NOP) for A and B, leaving pA and pB

(a) Case A in the algorithm

unmatched. Note that ‘rematch A and B’ in (Figure 7) re-
vokes the previous matchings made for A and B before

‘match’ them again. Then go on to the next pair from M_List.

[

* Propagate each matching from M_List to its parents */ ‘l
For matching (A, B) in M_List from Step 1 {
pA = Parent (A) ; pB = Parent (B)
While TRUE {
/* None of parents have been matched. */
If nPtr (pA) == NULL AND nPtr (pB) == NULL then {
If Label (pA) == Label (pB) then
Match pA and pB using NOP ; pA = Parent (pA) ;
pB = Parent (pB) ;
Else
/* make the subtree rooted at A to be a child of pB. *
Rematch A and B using MOV ; Break ;
}
Else {
/* Case A : pA has been matched but not with pB. */
If nPtr(pA) '= NULL AND nPtr(pA) != pB then
Rematch A and B using MOV ; Break ;
/* Case B : pB has been matched but not with pA. */
Else if nPtr(pB) '= NULL AND nPtr(pB) != pA then
Rematch A and B using MOV ; Break ;
/x Case C: pA has been matched with pB. */
Else
Break ;

)
} // While

} // For _J

(Figure 7) Propagate matchings upward

Now, consider the case that at least one of pA and pB
have been matched, which is corresponding to the outermost
‘Else’ part in the algorithm. Suppose that pA4 has been mat-
ched with some node which is not pB, which is Case A in
(Figure 7). This situation occurs, when pA has been matched

(b) Case B in the algorithm

(Figure 8) Resolve the conflict of matchings propagated from different subtrees

by propagating a matching from one of its subtrees except
the one rooted at A, as shown in (Figure 8) (a). In this case,
we preserve the matching (pA, pC) and matchings repre-
sented by the shaded subtree, and we ‘Rematch A and B’
using MOV. Case B in (Figure 7) represents the situation
that pB has been matched with some node which is not pA.
The similar conflict resolution is applied to this case, as sho-
wn in (Figure 8) (b).

The final ‘Else’ part represents the case where pA has
been already matched with pB by matching propagation
from other subtrees. It implies the condition that nPtr (pA)
= pB (also, nPtr (pB) = pA). It follows from negations of
all the conditions in 'If parts in (Figure 8) : NOT (nPtr (pA)
== NULL AND nPtr (pB} == NULL) AND NOT (nPtr (pA)
1= NULL AND nPtr (pA4) != pB) AND NOT (nPtr (pB) !=
NULL AND nPtr (pB) '= pA). In this case, we don’t need
to propagate matching (A, B, NOP) upwards, since matching
(pA, pB, NOP) has been generated from the propagation
from other matchings. So, just go on to the next pair from
M_List. Note that nodes of ‘.a[1].b[1]’, again nodes of ‘.a[1]
in T and Thew in (Figure 5) are matched through this step.

Step 3 (Match remaining nodes downwards) : In this
step, downwards from the roots, we attempt to match nodes

remaining unmatched until Step 3 begins.

While visiting nodes in T in depth-first order, we repeat

the following :

@ Find a matched node which has unmatched children.
Let A be the node in Tae and B be the matching node
of A (e, nPtr (4)). For A and B, let cA{l..s] and cB
[1..£] denote the list of unmatched child nodes of A, and
the list of unmatched child nodes of B, respectively,
where s is the number of unmatched child nodes of A
and ¢ is also similarly defined.

® For A, B, cAll.s), and cB[1..t], perform the algorithm
in (Figure 9).

The ‘then’ part of the first If’ clause in (Figure 9) implies
that we now process nodes that have been excluded for
matching process of Step 1. Note that they have not been
registered to N_Htable in Step 0, due to the Rule of Delaying
Ambiguous Matchings. Since matching space for these no-
des becomes much smaller than before, the quality of mat-
chings for these nodes is improved. The nodes, in (Figure
5), whose ILabel value is ‘h(1])’, are matched in this step.

The ‘Else if” part represents that, among unmatched child

X-tree Diff - E2 719 CIOIHE 21T 28X #gh X 212|E 691

nodes of A, we choose a node whose [Lable value is equal
to ILabel value of cB[j]. It implies the following : for each
node in ¢B[1..t], the Label value is used as the first criterion
to find a matching in cA [1.s], and if there are nodes with
the same Label value in cA [1.s], then the relative position
among cA [1..s] is used as the second criterion. The nodes
‘al1lb[11f[1]# 1T in (Figure 5), are matched using UPD
at this stage. Note that we assume its Value field has been
changed.

Two hash tables are used in this process. When a node
A is found in T all the unmatched child nodes cA[l..s]
are registered to both hash tables, where one hash table uses
the tMD values of nodes as the key, and the other the ILabel
values as the key. These hash tables are used to find
matchings for each unmatched child node ¢B[j] of node B

in Thew

/* For each cB[j] +/
For j in [1.t1 {
If there is a ¢A [i] whose tMD value is equal to tMD value
of c¢B (/] then
Match subtree rooted at node cA Li] and subtree rooted
at node ¢B[j] using NOP ;
Else If there is a cA [{] whose ILabel value is equal to ILabel
value of cB[;] then {
If Value (cA [i]) is equal to Value{cB[;]) then
Match cAli] and B[] using NOP ;
Else
Match cA[i] and ¢B[;j] using UPD ;
}
} // For

(Figure 9) Match remaining nodes downwards

Step 4 (Determine nodes for addition and deletion) :
In this step, we assume that all nodes that can be matched
have been matched through Step 1~ Step 3. Therefore nodes
that remain unmatched in Tyq are marked for deletion, while
nodes unmatched in Tres for insertion. In order to do these
tasks, we traverse Tuq to find unmatched nodes and set Op
fields to DEL, while we traverse Thaw to find unmatched
nodes and set Op fields to INS.

Next, we generate reports to users. Since generating re-
ports is straightforward, we are not going to explain report

generation algorithm here.

4. Algorithm Analysis and Experiments

In this section, we investigate the time complexity of our
algorithm and present the result of experiments performed

on X-tree Diff. Let us analyze the complexity of our algo-

692 ZEM2IER =X C HI0-CH Mez N30
rithm first. |7| denotes the number of nodes in tree T.

In Step 0, we construct X-trees Tug and Thew and two hash
tables O_Htable and N_Htable. Since the time cost of cons—
tructing X-trees is bounded by O(7T .41 +1T ,..1) and also
that of the hash tables is the same, the overall time cost
of Step 0 is bounded by O 7T, +1T ... l).

In Step 1, during the depth-first ordered traversal of 7o,
for each node visited, we look up O_Htable and N_Htable
to see whether a matching is found. If not found, we go on
to next nodes. But if found, for all the nodes belonging to
matched subtrees, we do not look up hash tables any more,
but update their nPtr and Op fields. In both cases, we need
to visit every node in T, Note that the time cost for the
tree traversal is bounded by O(IT,.!). Since both the cost
of ‘look up’ operation to hash tables and that of updating
the nPtr and Op fields of a node is O(1), the overall cost
of Step 1 is bounded by O(T,).

In Step 2, we propagate the matchings found in Step 1
upward to roots. The worst case occurs when all the internal
nodes are visited for this process. For each node visited, if
a matching is found, the nPtr and Op fields are updated,
which costs O(1) as seen before. Therefore, the time cost
in Step 2 is bounded by O T,).

In Step 3, we attempt to visit nodes of Tuq in depth-first
order and match nodes remaining unmatched. The worst
case for this step is that all the nodes, except the root, in
Toie remain unmatched at the beginning, and all these nodes
become matched at the end 9. This case occurs when Value
fields of all the nodes in Toq have been updated except the
root node. In order to process this case, we need to traverse
Toie and Thew. As known before, the time cost for tree tra-
versals is bounded by O T, | +1T e). In addition, all no-
des except the root in Ty are registered to hash tables in
the worst case. The time cost for this task is also O(| Tou).
Also, the cost of hashing and updating the nPtr and Op fields
of matched nodes is 0(1). Therefore, the overall time cost
becomes bounded by O Tou |+ 17 o).

In Step 4, we traverse Tuw and They to find unmatched
nodes and set Op fields properly. The time cost of these is

O Toa | +1T). The cost of report generation is also to

O T o +1T 00), since report generation requires traver—
sal Of Tuld and Tnew~

In conclusion, the time cost of X-tree Diff, even in worst

case, 1s OU T, 1T s l). That is, time complexity is pro-
portional to the number of all the nodes in the two X-trees.
It is better than the time cost of the BULD Diff algorithm.

10000

Time cost in micro seconds

1000 10000
Total number of nodes

(Figure 10) Result of experiments

Now, we mention about experiments carried out on X-tree
Diff. We implemented X-tree Diff algorithm in MS Visual
C++, using Xerces C++ XML parser 10, which is the same
parser used by the BULD Diff [16] and X-Diff+ [17]. We
experimented X-tree Diff on sixties web pages of twenties
web sites, which are of newspapers and TV/Radio stations.
In (Figure 10), results of experiments on about 11,000 old
and new versions from these web pages are reported.

For each one of points in (Figure 10), the x-coordinate
represents the number of nodes in one of experimented HT
ML documents, while the y—coordinate the execution time
to detect changes between the old and new version of the
same document. Note that the trend line in (Figure 10), whi-
ch is acquired by linear regression analysis, shows that the
time cost of our algorithm is proportionate to the number
of nodes in documents. These experiments were carried out
on a Pentium I 1GHz PC with 384MB memory in MS win-
dows 2000.

Currently, X-tree Diff algorithm is being used in a com-
mercial hacking detection system, called the WIDS, which
1s to find changes occurred in registered websites, and report
suspicious changes to users. In (Figure 11), we show a sc-
reen of WIDS where, for the old and new version of an XML
document, changes are detected and reported to users.

Since August in 2002, over 7000 web pages from about
700 web sites have been registered to WIDS, and these web
pages, currently, are being monitored every 5 to 20 minutes,

depending on user requirements. According to our experi-

9) We assume that roots of 7we and The, are always matched.

10) Available at http://xml.apache.org/xerces c.

ence, X-tree Diff is fast enough, and the output quality is
quite satisfactory.

(Figure 11) A snapshot of WIDS

5. Conclusion and Future work

In this paper, we propose a change detection algorithm,
X-tree Diff, which is fast, reliable, simple and clear. It is
shown that X-tree Diff runs fast in time cost in worst case,
which is even faster than BULD Diff algorithm [16]. Because
of using MD4 [20] as hash function and the Rule of Delaying
Ambiguous Matchings, matching process in X-tree Diff is
more reliable than any other algorithms using hashing [15-
171, so that the possibility of wrong matchings may be re-
duced.

In this work, we experimented X-tree Diff on real data
instead of synthetic documents generated for experimenta-
tion. According to experiments of applying our algorithm to
over 11,000 old and new versions from sixties web pages
of twenties web sites, the performance is reported as satis-
factory. We are currently working on the comparison of X-
tree Diff with existing algorithms in terms of output quality,
based on both real and synthetic data. The result will be
published in a forthcoming paper.

The structure of X-tree Diff is so simple and clear that
we can extend it in various ways. Right now, we are in-
terested in tuning X-tree Diff by extending it according to
the requirements of applications.

References

{11 A. Haake, “CoVer . A Contextual Version Server for Hy-
pertext Applications,” In Proc. of 4th ACM Conf,, Hyper-
text, Milan. [taly, pp.43-52, Nov., 1992.

12] K. Osterbye, “Structural and Cognitive Problems in Pro-
viding Version Control for Hypertext,” In Proc. of 4th ACM
Conf, Hypertext, Milan. Italy, pp33-42, Nov., 1992.

X-tree Diff : E2| 7|¢t HIOIEE I8t =EHQ! Hat X ¢e

0

693

{3] W. Labio and H. G. Molina, “Efficient snapshot differential
algorithms for data warehousing,” In Proc. of 20th Conf
VILDB, Bombay. India, pp.63-74, Sep., 1996.

[4] J. Widom and S. Ceri, Active Database System : Triggers
and Rules for Advanced Database Processing, Morgan Ka-
ufmann, 1996.

[51 E. W. Myers, “An O(ND) Difference Algorithm and Its Va-
riations,” Algorithmica, 1(2), pp.251-266, 1986.

[6] “Concurrent Versions System(CVS),” Free Software Fou-
ndation, http://www.gnu.org/manual/cvs-19.

[7] S. Chawathe, A. Rajaraman, H. G. Molina and J. Widom,
“Change Detection in Hierarchically Structured Informa-
tion,” In Proc. of ACM SIGMOD Int'l Conf. on Manage—-
ment of Data, Montreal, June, 1996.

[8] S. M. Selkow, “The tree-to-tree editing problem,” Informa-
tion Proc. Letters, 6, pp.184-186, 1977.

[9] K. Tai, “The tree-to—tree correction problem,” Journal of
the ACM, 26(3), pp.422-433, July, 1979.

[10] S. Lu, “A tree-to-tree distance and its application to cluster
analysis,” IEEE TPAMI, 1(2), pp.219-224, 1979.

{11} J. T. Wang and K. Zhang, “A System for Approximate Tree
Matching,” IEEE TKDE, 6(4), pp.059-571, August, 1994.

(121 S. Chawathe and H. G. Molina, “Meaningful Change Detec-
tion in Structured Data,” In Proc. of ACM SIGMOD '97,
pp.26-37, 1997.

[13] S. Chawathe, “Comparing Hierarchical Data in External
Memory,” In Proc. of the 25th VLDB Conf., pp.90-101, 1999

[14] S.]. Lim and Y. K. Ng, “An Automated Change-Detection
Algorithm for HTML Documents Based on Semantic Hi-
erarchies,” The 17th ICDE, pp.303-312, 2001.

[15] Curbera and D. A. Epstein, “Fast Difference and Update
of XML Documents,” XTech 99, San Jose, March, 1999

[16] G. Cobéna, S. Abiteboul and A. Marian, “Detecting Changes
in XML Documents,” The I8th ICDE, 2002.

[17]1 Y. Wang, D. J. DeWitt, J. Y. Cai, “X-Diff : An Effective
Change Detection Algorithm for XML Documents,” To ap-
pear in the 19th ICDE, 2003.

[18] K. Zhang and D. Shasha, “Simple fast algorithms for the
editing distance between trees and related problems,”
SIAM journal of Computing, 18(6), pp.1245-1262, 1989.

[19] H. Maruyama, K. Tamura and N. Uramoto, “Digest values
for DOM(DOMHash) Proposal,” IBM Tokyo Research La-
boratory, 1998.

[20] R. Rivest, “The MD4 Message-Digest Algorithm,” MIT
and RSA Data Security, Inc, April, 1992,

[21] N. Doraswamy and D. Harkins, IPSec : The New Security
Standard for the Intemnet, Intranets, and Virtual Private
Networks, Prentice Hall PTR, 1999.

[22] Document Object Model (DOM) http://www.w3.org/DOM/.

[23] R. Wagner and M. Fischer, “The string -to-string correc-
tion problem,” Journal of the ACM, 21, pp.168-173, 1974,

694 FEXNe[SGEER ¢ HI0-CH MeS @003 10

of M &
¢-mail © sklee@dankook.ac.kr
198263 A& ojst 3 A e (s
199011 Computer Science, University of
Towa(44H)
1993'd Computer Science, University of
Towa(2HAH)
19923 = Ast< 3] ICDE(Int. Conf. On Data Engineering)
AA H¢F =4 7
19939 ~1997d AlF st AR At asy
1979 ~8A dadigta HFe A3 Fas
A4 Fok: dojefwol oA Ebd Aue], dofg o]~
Alzp oo AA, dFH e sleA 9 Az 24
9, XML, 9§ EAA9 ws g&x] HAdy

(versioning) %

o S 0ot
c-mail : dakim70@dankook.ac.kr
19934 A&t ST SH(EHAY)
1999 ojeta wjste A4S

(44h
20024 Dvish kel 7 FE w ek
(A5 2)

20008 ~20021d (FF)AZEY O] HAYIE AYAT7H

2003~ @A etz Eta wAb

A Eof: dlolHuol 2 Rdy Hatus XML, § E4
o A9} Wal ©A) ¥ (versioning) &

