• Title/Summary/Keyword: 인체전산팬텀

Search Result 11, Processing Time 0.03 seconds

Evaluation of Absorbed Dose for the Right Lung and Surrounding Organs of the Computational Human Phantom in Brachytherapy by Monte Carlo Simulation (근접방사선치료 시 몬테카를로 전산모사를 이용한 인체전산팬텀의 우측 폐와 주변 장기 선량평가)

  • Lee, Jun-Seong;Kim, Yang-Soo;Kim, Min-Gul;Kim, Jung-Soo;Lee, Sun-Young
    • Journal of radiological science and technology
    • /
    • v.43 no.6
    • /
    • pp.443-451
    • /
    • 2020
  • This study is to evaluate absorbed dose from right lung for brachytherapy and to estimate the effects of tissue heterogeneities on dose distribution for Iridium-192 source using Monte Carlo simulation. The study employed Geant4 code as Monte Carlo simulation to calculate the dosimetry parameters. The dose distribution of Iridium-192 source in solid water equivalent phantom including aluminium plate or steel plate inserted was calculated and compared with the measured dose by the ion chamber at various distances. And the simulation was used to evaluate the dose of gamma radiation absorbed in the lung organ and other organs around it. The dose distribution embedded in right lung was calculated due to the presence of heart, thymus, spine, stomach as well as left lung. The geometry of the human body was made up of adult male MIRD type of the computational human phantom. The dosimetric characteristics obtained for aluminium plate inserted were in good agreement with experimental results within 4%. The simulation results of steel plate inserted agreed well with a maximum difference 2.75%. Target organ considered to receive a dose of 100%, the surrounding organs were left the left lung of 3.93%, heart of 10.04%, thymus of 11.19%, spine of 12.64% and stomach of 0.95%. When the statistical error is performed for the computational human phantom, the statistical error of value is under 1%.

Antenna Efficiency Variation by the Influence of Human Body (인체의 영향에 의한 안테나 효율의 변화)

  • Lee, Yong-Joo;Han, Jun-Hee;Yang, Woon-Geun
    • Journal of IKEEE
    • /
    • v.12 no.4
    • /
    • pp.185-195
    • /
    • 2008
  • In this paper, PIFA(Planar Inverted F Antenna) which operates in PCS(Personal Communication System) band is designed and characteristics are investigated. Designed PIFA was installed in three types of handsets, folder, bar, slide, and the performance was evaluated. Head and hand phantom were added to make the most similar environment to real condition of mobile phone use, and influences on antenna performance were analyzed. The simulation results confirm radiation patterns are greatly changed and antenna efficiency is decreased by the effect of human body. Performance variation of the mobile handset antenna was observed as changing the angle between mobile handset and head phantom from $0^{\circ}$ to $2^{\circ},\;4^{\circ}$ to confirm the variation caused by the relative position of mobile handset and head phantom. Directivity was decreased gradually as the antenna goes away from head phantom, and showed the trend of increasing efficiency. But in the case of bar type, where the position of antenna is relatively close to head phantom, that trend didn't show. It was confirmed that the shape of handset has a great effect on the performance.

  • PDF

Development of Reference Korean Organ and Effective Dose Calculation Online System (웹 기반 표준한국인 장기 흡수선량 및 유효선량 평가 시스템 개발)

  • Park, Sooyeun;Yeom, Yeon Soo;Kim, Jae Hyeon;Lee, Hyun Su;Han, Min Cheol;Jeong, Jong Hwi;Kim, Chan Hyeong
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.1
    • /
    • pp.30-37
    • /
    • 2014
  • Recently High-Definition Reference Korean-Man (HDRK-Man) and High-Definition Reference Korean-Woman (HDRK-Woman) were constructed in Korea. The HDRK phantoms were designed to represent respectively reference Korean male and female to calculate effective doses for Korean by performing Monte Carlo dose calculation. However, the Monte Carlo dose calculation requires detailed knowledge on computational human phantoms and Monte Carlo simulation technique which regular researchers in radiation protection dosimetry and practicing health physicists do not have. Recently the UFPE (Federal University of Pernambuco) research group has developed, and opened to public, an online Monte Carlo dose calculation system called CALDOSE_X(www.caldose.org). By using the CALDOSE_X, one can easily perform Monte Carlo dose calculations. However, the CALDOSE_X used caucasian phantoms to calculate organ doses or effective doses which are limited for Korean. The present study developed an online reference Korean dose calculation system which can be used to calculate effective doses for Korean.

Development of a Korean Adult Female Voxel Phantom, VKH-Woman, Based on Serially Sectioned Color Slice Images (고해상도 연속절단면 컬러해부영상을 이용한 한국인 성인여성 복셀팬텀 VKH-Woman 개발)

  • Jeong, Jong Hwi;Yeom, Yoen Soo;Han, Min Cheol;Kim, Chan Hyeong;Ham, Bo Kyoung;Hwang, Sung Bae;Kim, Seong Hoon;Lee, Dong-Myung
    • Progress in Medical Physics
    • /
    • v.23 no.3
    • /
    • pp.199-208
    • /
    • 2012
  • The computational human phantom including major radiation sensitive organs at risk (OARs) can be used in the field of radiotherapy, such as the variation of secondary cancer risks caused by the radiation therapy and the effective dose evaluation in diagnostic radiology. The present study developed a Korean adult female voxel phantom, VKH-Woman, based on serially sectioned color slice images of Korean female cadaver. The height and weight of the developed female voxel phantom are 160 cm and 52.72 kg, respectively that are virtually close to those of reference Korean female (161 cm and 54 kg). The female phantom consists of a total of 39 organs, including 27 organs recommended in the ICRP 103 publication for the effective dose calculations. The female phantom composes of $261{\times}109{\times}825$ voxels (=23,470,425 voxels) and the voxel resolution is $1.976{\times}1.976{\times}2.0619mm^3$ in the x, y, and z directions. The VHK-Woman is provided as both ASCII and Binary data formats to be conveniently implemented in Monte Carlo codes.

Change of Proton Bragg Peak by Variation of Material Thickness in Head Phantom using Geant4 (Geant4 전산모사를 이용한 두개골 팬텀의 물질 두께 변동에 따른 양성자 브래그 피크의 위치 변화)

  • Kim, You Me;Chon, Kwon Su
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.4
    • /
    • pp.401-408
    • /
    • 2021
  • Proton therapy using the Bragg peak is one of the radiation therapies and can deliver its maximum energy to the tumor with giving least energy for normal tissue. A cross-sectional image of the human body taken with the computed tomography (CT) has been used for radiation therapy planning. The HU values change according to the tube voltage, which lead to the change in the boundary and thickness of the anatomical structure on the CT image. This study examined the changes in the Bragg peak of the brain region according to the thickness variation in the head phantom composed of several materials using the Geant4. In the phantom composed of a single material, the Bragg peak according to the type of media and the incident energy of the proton beams were calculated, and the reliability of Geant4 code was verified by the Bragg peak. The variation of the peak in the brain region was examined when each thickness of the head phantom was changed. When the thickness of the soft tissue was changed, there was no change in the peak position, and for the skin the change in the peak was small. The change of the peak position was mainly changed when the bone thickness. In particular, when the bone was changed only or the bone was changed together with other tissues, the amount of change in the peak position was the same. It is considered that measurement of the accurate bone thickness in CT images is one of the key factors in depth-dose distribution of the radiation therapy planning.

Evaluation of Effective Dose with National Diagnostic Reference Level using Monte-Carlo Simulation (몬테카를로 시뮬레이션을 이용한 국내 일반엑스선검사 진단참고수준의 유효선량 평가)

  • Lee, Seung-Youl;Seoung, Youl-Hun
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.7
    • /
    • pp.1041-1047
    • /
    • 2021
  • In this study, the effective dose for frequently general radiography among the diagnostic reference level (DRL) for examinations provided by the government in Korea was evaluated using the Monte Carlo N-Particle eXtended (MCNPX) simulation tool. We were selected to evaluate for a total of 5 examination sites which included head anterior-posterior, chest (posterior-anterior, lateral), abdomen anterior-posterior and pelvis anterior-posterior. Physical conditions such as tube voltage and tube current used in MCNPX simulation were used in domestic conditions of the Korea Disease Control and Prevention Agency (KDCA). To evaluate domestic medical radiation exposure, we used the HDRK-Man computerized human phantom manufactured based on the international standard ICRP 103 that was applied to the MCNPX simulation. The phantom could represent the standard body shape of Koreans. As a results, the effective dose corresponding to the DRL based on adult males of head anterior-posterior position was 0.086 mSv, chest posterior-anterior position was 0.05 mSv, chest lateral was 0.354 mSv, abdomen anterior-posterior position was 0.548 mSv, and pelvis anterior-posterior position was 0.451 mSv.

Characteristic Evaluation of Exposed Dose with NORM added Consumer Product based on ICRP Reference Phantom (ICRP 기준팬텀 기반의 천연방사성핵종이 포함된 가공제품 사용으로 인한 피폭선량 특성 평가)

  • Yoo, Do Hyeon;Lee, Hyun Cheol;Shin, Wook-Geun;Choi, Hyun Joon;Min, Chul Hee
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.4
    • /
    • pp.159-167
    • /
    • 2014
  • In Korea, July 2012, the law as called 'Act on Safety Control of Radioactive Rays Around Living Environment' was implemented to control the consumer product containing Naturally Occurring Radioactive Material (NORM), but, there are no appropriate database and effective dose calculation system. The aim of this study was to develop evaluation technique of the exposure dose with the use of the consumer products containing NORM and to understand the characteristics of the exposed dose according to the radiation type and energy. For the evaluate of exposure dose, the ICRP reference phantom was simulated by the MCNPX code based on Monte Carlo method, and the minimum, medium, maximum energy of alphas, betas, gammas from the representative NORM of Uranium decay series were used as the source term in the simulation. The annual effective doses were calculated by the exposure scenario of the consumer product usage time and position. Short range of the alpha and beta rays are mostly delivered the dose to the skin. On the other hand, the gamma rays mostly delivered the similar dose to all of the organs. The results of the annual effective dose with $1Bq{\cdot}g^{-1}$ radioactive stone-bed and 10% radioactive concentration were employed with the usage time of 7 hours 50 minute per day, the maximum annual effective dose of alphas, betas, gammas were calculated 0.0222, 0.0836, $0.0101mSv{\cdot}y^{-1}$, respectively.

Monte Carlo Simulation of Absorbed Energy by Gold Nano-Particles for Proton (양성자에 대한 금 나노입자의 밀도에 따른 흡수 에너지의 몬테카를로 전산모사)

  • Kwon Su Chon
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • Proton therapy is known for its superior treatment method due to Bragg peak. To enhance the therapeutic effects of protons, research has been conducted on distributing gold nanoparticles within tumors to increase the absorbed dose. While previous studies focused on handling gold nanoparticles at micrometer and nonometer scale, this study proposes a method to computationally estimate the effect of gold nanoparticles at the millimeter scale. The Geant4 toolkit was applied to computational modeling. Assuming a uniform distribution of water, similar to the human body, and gold nanoparticles, the concentration of gold nanoparticles was adjusted using density ratios. When the density ratio was 5%, the gain in absorbed energy due to gold nanoparticles was nearly twice that of the pure water phantom at the Bragg peak. As the density ratio increased, the gain in absorbed energy linearly increased. When gold nanoparticles were distributed in only one voxel at the Bragg peak, the energy of the protons affected only the neighboring voxels. However, in cases where gold nanoparticles were distributed over a wide area, the volume showing 95% of the maximum absorbed energy (9.46 keV) for the pure water phantom (9.95 keV) exhibited an improvement in absorbed energy over a region 16 times larger, and this region increased as the density ratio increased. Further research is needed to quantify the relationship between the density ratio of gold nanoparticles and the relative biological effect (RBE) in the millimeter scale.

A Study on Absorbed Dose in the Breast Tissue using Geant4 simulation for Mammography (유방촬영에서 Geant4 시뮬레이션를 이용한 유방조직내 흡수선량에 관한 연구)

  • Lee, Sang-Ho;Lee, Jong-Seok;Han, Sang-Hyun
    • Journal of radiological science and technology
    • /
    • v.35 no.4
    • /
    • pp.345-352
    • /
    • 2012
  • As the breast cancer rate is increasing fast in Korean women, people pay more attention to mammography and number of mammography have been increasing dramatically over the last few years. Mammography is the only means to diagnose breast cancer early, but harms caused by radiation exposure shouldn't be overlooked. Therefore, it is important to calculate the radiation dose being absorbed into the breast tissue during the process of mammography for a protective measure against radiation exposure. Because it is impossible to directly measure the radiation dose being absorbed into the human body, statistical calculation methods are commonly used, and most of them are supposed to simulate the interaction between radiation and matter by describing the human body internal structure with anthropomorphic phantoms. However, a simulation using Geant4 Code of Monte Carlo Method, which is well-known as most accurate in calculating the absorbed dose inside the human body, helps calculate exact dose by recreating the anatomical human body structure as it is through the DICOM file of CT. To calculate the absorbed dose in the breast tissue, therefore, this study carried out a simulation using Geant4 Code, and by using the DICOM converted file provided by Geant4, this study changed the human body structure expressed on the CT image data into geometry needed for this simulation. Besides, this study attempted to verify if the dose calculation of Geant4 interlocking with the DICOM file is useful, by comparing the calculated dose provided by this simulation and the measured dose provided by the PTW ion chamber. As a result, under the condition of 28kVp/190mAs, the Difference(%) between the measured dose and the calculated dose was found to be 0.08 %~0.33 %, and at 28 kVp/70 mAs, the Difference(%) of dose was 0.01 %~0.16 %, both of which showed results within 2%, the effective difference range. Therefore, this study found out that calculation of the absorbed dose using Geant4 Simulation is useful in measuring the absorbed dose in the breast tissue for mammography.

Classification of Urinary Stone into Uric Acid & Non-uric Acid by Dual-Energy (이중에너지 전산화단층촬영을 이용한 요로결석의 성분 분석에 관한 연구)

  • Myung-Jin Jung;Sung-Gil Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.835-841
    • /
    • 2023
  • The aim of this study is to evaluate the diagnostic ability of dual-energy computed tomography (DECT) for Composition determination of urinary stones in phantom model. Seventeen cases with urinary stones who underwent DECT were enrolled in the study. The composition of the urinary stones was extracted from the seventeen patients were analyzed with DECT in phantom model with fresh pork. The volume scan method using Dual-energy software was used and the scanned image sets were assessed. All 17 urinary stones of the phantom model were analyzed according to the stone composition using DE stone Analysis were divided into uric acid stones (n=6, 35.29%) and non-uric acid stones (n=11, 64.71%). These urinary stones were pathologically confirmed. The mean attenuation values of uric acid stones at 135 kV, 100 kV and 80 kV was 348.87 ± 166.37 HU, 345.33 ± 151.18 HU and 337.94 ± 172.77 HU, respectively. The mean attenuation values of non-uric acid stones at 135 kV, 100 kV and 80 kV was 551.93 ± 297.09 HU, 747.04 ± 351.31 HU and 958.19 ± 424.72 HU, respectively. At 80 kV, uric acid stones and non-uric acid stones showed significant difference in the attenuation values(P<0.05). The attenuation values of DECT could differentiate the compositions of urinary stones between uric acid and non-uric acid stones at 80 kV in phantom model.