• Title/Summary/Keyword: 인접 시공

Search Result 180, Processing Time 0.021 seconds

Shear strain behaviour due to twin tunnelling adjacent to pile group (군말뚝 기초 하부 병렬터널 굴착 시 전단변형 거동 특성)

  • Subin Kim;Young-Seok Oh;Yong-Joo Lee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.1
    • /
    • pp.59-78
    • /
    • 2024
  • In tunnel construction, the stability is evaluated by the settlement of adjacent structures and ground, but the shear strain of the ground is the main factor that determines the failure mechanism of the ground due to the tunnel excavation and the change of the operating load, and can be used to review the stability of the tunnel excavation and to calculate the reinforcement area. In this study, a twin tunnel excavation was simulated on a soft ground in an urban area through a laboratory model test to analyze the behavior of the twin tunnel excavation on the adjacent pile grouped foundation and adjacent ground. Both the displacement and the shear strain of ground were obtained using a close-range photogrammetry during laboratory model test. In addition, two-dimensional finite element numerical analysis was performed based on the model test. The results of a back-analysis showed that the maximum shear strain rate tends to decrease as the horizontal distance between the pillars of the twin tunnel and the vertical distance between the toe of the pile group and the crown of the tunnel were decreased. The impact of the second tunnel on the first tunnel and pile group was decreased as the horizontal distance between the pillars of the twin tunnel was increased. In addition, the vertical distance between the toe of the pile group and the crown of the tunnel had a relatively greater impact on the shear strain results than the horizontal distance of the pillars between the twin tunnels. According to the results of the close-range photogrammetry and numerical analysis, the settlement of adjacent pile group and adjacent ground was measured within the design criteria, but the shear strain of the ground was judged to be outside the range of small strain in all cases and required reinforcement.

The Behavior of Piled Bridge Abutments Subjected to Lateral Soil Movements - A Study on the Centrifuge Model Tests - (측방유동을 받는 교대말뚝기초의 거동분석 (I) - 원심모형실험 연구 -)

  • 서정주;서동희;정상섬;김유석
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.5-19
    • /
    • 2003
  • A series of centrifuge model tests were conducted to investigate the behavior of piled bridge abutments subjected to lateral soil movements induced by approach embankments. The effect of clay layer depth and the rate of embankment construction on piled bridge abutments are the main focus of this study. Tests were performed for two loading types: (1) incremental loading applied in six lifts to the final embankment height; (2) instant loading corresponding to the final embankment height applied in one lift quickly. A variety of instrumentations such as LVDTs, strain gauges, earth pressure transducers, and pore pressure transducers are installed in designed positions in order to clarify the soil-pile interaction and the short- and long-term behavior for piled bridge abutments adjacent to surcharge loads. Based on the results of a series of centrifuge model tests, the distribution of lateral flow induced by staged embankment construction has trapezoidal distribution. The maximum lateral soil pressure is about 0.75$\gamma$H at surcharge loading stage, and about 0.35 $\gamma$H at over 80% consolidated stage.

A Case Study of Post-Grouted Drilled Shaft in Weathered Rock (풍화암소켓 대구경 현장타설말뚝의 선단보강그라우팅 사례)

  • Kwon, Oh-Sung;Jung, Sung-Min;Choi, Yong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.6
    • /
    • pp.5-16
    • /
    • 2011
  • Post-grouting for the drilled shaft is known to remarkably increase the end bearing capacity of pile by consolidating and reinforcing the disturbed ground containing slime around the pile tip. However, the general design guideline for post-grouting has not been established yet in Korea. Especially in the domestic application, the post-grouting is employed just for repairing the pile with unacceptable resistance rather than for increasing the design resistance of pile. Therefore, little is reported about the effect of post-grouting on the pile resistance itself. In this study, the effect of post-grouting on the resistance of drilled shafts installed in the weathered rock in Korea was estimated by performing the bi-directional load tests on the piles with and without the post-grouting. The test results presented that the initial slope of end bearing-base displacement curve in the pile with post-grouting was 4 times higher than that without post-grouting. At the acceptable settlement (1% of pile diameter), the end bearing capacities of piles with and without the post-grouting were estimated to be 12.0 MPa and 7.0 MPa, respectively, which indicate that the post-grouting could increase the end bearing resistance of pile in weathered rock more than 70%.

The response of a single pile to open face tunnelling (Open face 터널시공으로 인한 단독말뚝의 거동)

  • Lee, Cheol-Ju
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.5
    • /
    • pp.529-545
    • /
    • 2012
  • Three-dimensional (3D) finite element analyses have been performed to study the behaviour of a single pile to open face tunnelling in stiff clay. Several key factors such as tunnelling-induced ground and pile settlement, and shear transfer mechanism have been studied in detail. Tunnelling resulted in the development of pile settlement larger than the Greenfield soil surface settlement. In addition, due to changes in the shear transfer between the pile and the soil next to the pile with tunnel advancement, axial force distributions along the pile change drastically. The apparent allowable pile capacity was reduced up to about 30% due to the development of tunnelling-induced pile head settlement. The skin friction on the pile was increased with tunnel advancement associated with the changes of soil stresses and ground deformation and hence axial pile force distribution was reduced. Maximum tunnelling-induced tensile force on the pile was about 21% of the designed pile capacity. The zone of influence on the pile behaviour in the longitudinal direction may be identified as ${\pm}1$-2D (D: tunnel diameter) from the pile centre (behind and ahead of the pile axis in the longitudinal direction) based on the analysis conditions assumed in the current study. Negative excess pore pressure was mobilised near the pile tip, while positive excess pore pressure was computed at the upper part of the pile. It has been found that the serviceability of a pile experiencing adjacent tunnelling is more affected by pile settlement than axial pile force changes.

Evaluation of Flexural Behavior of Hollow Prestressed Concrete Pile for Continuous Pile Wall (주열식 벽체용 중공 프리스트레스트 콘크리트 파일의 휨거동 평가)

  • Lee, Young-Geun;Jang, Min-Jun;Yoon, Soon-Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.20-27
    • /
    • 2014
  • In the construction site, various earth retaining systems are developed and applied to maintain stability of excavated area and structures. Among the methods, the underground continuous wall and the column-type diaphragm wall methods are especially used in construction site nearby buildings or roads. However, these methods have some disadvantages such as the difficulty of quality control and long curing time because these methods need to cast fresh concrete at the construction site. In addition, these methods are usually applied to the site for the temporary purpose. In this paper, we suggest precast hollow prestressed concrete pile for continuous pile wall system. To investigate the structural behavior of suggested pile, which is the main member of the suggested system, tests pertaining to the structural behavior and prestressing force applied in the pile are conducted. From the test results, it was found that the prestressing force measured is sufficient compared with the value obtained by the design equation and the cracking moment measured is 34% higher than the design value. In addition to the above, this precast hollow prestressed concrete pile has an additional safety margin that the maximum moment is 59.2% higher than the cracking moment which is one of the serviceability limits for the design of the system.

Tension Test on the Bar-type Anti-buoyancy Anchors in the Weathered Rock (풍화암에 시공된 Bar Type 부력저항 앵커의 인장 시험)

  • Park, Chan-Duk;Lee, Kyu-Hwan;Ryu, Nam-Jae;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.1
    • /
    • pp.175-181
    • /
    • 2004
  • This study is about a section where underground water level occurs at the underground 5m depth by the excavation of the ground, as a stream is adjacent to a excavation section of High Speed Railway ${\bigcirc}{\bigcirc}$ Station construction sections and a reservoir being always full of water is located at the left side of the construction section. Therefore this test is executed for the design and construction of buoyance anchors able to permanently prevent buoyance by the underground water level at working and for the stable construction and permanent smooth maintenance of structures. In this test, bar type anchors are divided according to their length and standard to execute test-anchor test, and In spot test, 9 test-anchors test, proof test to construction process, suitability test and acceptance test are executed 4 times to 9 test-anchors by dividing anchors according to the length of permanent anchor, the outer diameter of bar and boring diameter. Standard motion characteristic centering on load transmission and break mechanism of bar-type anchors for the prevention of buoyance will be showed in the thesis.

A Case study and Analysis on the Up-Lift Pressure Treatment Evaluation of Underground Installations for their Efficient Adoption (사례분석을 통한 효율적 상향수압(Up-Lift Pressure) 처리공법 적용방안에 관한연구 - ◯◯ 상업지역 현장사례 중심으로 -)

  • Ko, Ok-Yeol;Kwon, Oh-Chul;Shim, Jae-Kwang;Park, Tae-Eun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.119-129
    • /
    • 2009
  • Building construction trends have been changed dramatically in terms of size and mass. With the need to maximize land usage, there has been an increase in the construction of high-rise buildings. This affects not only the entire construction duration and cost, but also subsequent construction activities, such as work to increase underground facilities and in reclamation land area construction. These types of site conditions require soft ground reinforcement and the proper uplift water pressure treatment. In general, two kinds of methods have been used for uplift water pressure treatment systems. However, there have been some problems arising as the result of a lack of research and analysis on underground construction techniques, and a reliance on experiments over actual survey and analysis of site conditions. This paper focused on the problems of conventional selection procedure, by analyzing drawings and proposing a kind of modeling for a reasonable procedure. The results were applied to OO project as a sample construction case to be verified in this research. The initial plan in the case project was the Rock Anchor System. However, as there were terrible miscalculations of basic site conditions that had an extraordinary influence on the underground water level, such as the site's proximity to the Han-river, it was necessary to change the plan to include apermanent drainage system. This achieved a direct construction cost reduction \ 406,702,000 and a maximum sayings of 4% of operational cost, based on the 50-year building Life Cycle Cost.

Analysis on Impact Factors of Open-cut Type Excavation Work using Numerical Analysis Method (수치해석기법을 이용한 개착식 지반굴착공사의 영향인자 분석)

  • Seong, Joo-Hyun;Kim, Yong-Soo;Shin, Byoung-Gil
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.3
    • /
    • pp.43-53
    • /
    • 2013
  • In this study, an analysis about the causes of different types of excavation on accidents is required in order to prevent the frequently occurring accidents related to the earth retaining structure and excavation. Also, analysis of influence was performed by using numerical typical soil conditions and construction trend using numerical analysis method. According to the analysis results of 25 accident cases, the main influence factors were found as following: insufficient of soil survey, instability of temporary facility and lack of groundwater treatment, etc. Furthermore, in the numerical analysis result of 22 cases, drainage method was occurred larger settlement than waterproof method in the Inland. In case of applying the earth anchor method, it needs more detailed in the regions, which are discovered soft ground or rock discontinuities. Also, The consolidated clay absolutely needs further consideration of excess hydrostatic pressure.

Structural Design And Analysis of Haeundae Doosan We've The Zenith (해운대 두산 위브 더 제니스 구조설계)

  • Park, Ki-Hong;Park, Suk-Jin
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.93-98
    • /
    • 2008
  • Haeundae Doosan We've The Zenith project is adjacent to Suyoung-bay, now it is in the process of excavation and foundation work. The main use of the tower is residence which height is 300m and 80 floor, the highest residential reinforced concrete building through the Orient. It is comprised of 3 high- rised buildings and 1 low-rised building, the basement is 230m wide and 200m length sized mass structure. The lateral resistance system is acted effectively against the lateral load and satisfactorily against the wind vibration by the 4 direction extension of the center core wall($700{\sim}800mm$ thickness) and reinforced concrete column set around the slab. Flat-plate slab system(250mm thickness) is adjusted for the slab system and it enables effective work process and shortening the working term by minimizing the ceiling height and not needing to install perimeter beam and drop panel. The strength and serviceability of the structure is able to be monitored and estimated constantly through the health monitoring system during the construction and after the construction.

  • PDF

A study of Improvement on the Road Drainage Poor Site (도로배수 취약구간의 개선방안에 대한 연구)

  • Lee, Man-Seok;Kim, Heung-Rae;Lee, Kyung-Ha;Kang, Min-Soo;Song, Min-Tae
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.125-131
    • /
    • 2011
  • This research aims to investigate the cause of the occurrence of a weak road drainage section scientifically and specifically through a site survey for a poorly drained section occurring due to rainfalls during road operation. This paper deeply reviewed the existing research results and current situation data on the poorly drained sections accumulated in Korea Expressway Corporation in order to investigate the cause of the occurrence of a weak road drainage section, and deeply verified and analyzed the weak sections for the road surface drainage facilities and the other road drainage facilities by visiting the expressway controlled by the 6 local headquarters and 33 branches of Korea Expressway Corporation. As a result of site surveys for the weak road drainage sections, i) in a road surface section, occurrence of ponding in the road shoulder pavement due to slope changes, bad collection of water in the collecting well at a median strip, shortage of road shoulder dike height, and inferior construction, etc. was analyzed to be the main cause of the occurrence of poorly drained sections, and ii) in a road neighborhood section, the occurrence of pavement height difference in a main road and shoulder section due to inferior ditches on a slope and the bad drain age at the inlet and outlet of a culvert due to soil deposits, debris, etc. were analyzed to be the main cause of the occurrence of weak sections. Proposed as a plan to improve the poorly drainage section of road were i)calculation of capacity through material changes at the ditch, enhancement of vertical sections and hydraulic analysis in terms of construction and other aspects, ii)derivation of a combined slope considering a slope and a vertical linearity and maintenance of proper distance between drainage structures in a vertical concave section in terms of geometrical structure, and iii)calculation of the drainage facility installation interval using a minutely rainfall intensity formula and a non-uniform flow analysis technique in terms of hydraulics and hydrologics and prompt removal of rainfalls from the road surface according to a linear drainage method.