• Title/Summary/Keyword: 인장 균열

Search Result 892, Processing Time 0.021 seconds

Fracture Toughness Evaluation and Influence Parameter Analysis by Numerical Simulation of Brazilian Test (Brazilian시험의 수치해석 시뮬레이션을 통한 파괴인성 산정 및 영향변수 분석)

  • Synn, Joong-Ho;Park, Chan;Shin, Hee-Soon;Chung, Yong-Bok;Lee, Hi-Keun
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.67-75
    • /
    • 2000
  • The numerical simulation of Brazilian fracture toughness test is carried out using PFC code and the influence parameters are analyzed such as shape of loading plane, size of Brazilian disc and unit panicle of model, loading angle and loading rate. The flattened Brazilian disc is adopted for applying uniform load. The range of loading angle(2$\alpha$) necessary to induce the tensile crack at disc center and to obtain the load-displacement curve giving the critical load for the stable crack propagation is shown as 20$^{\circ}$~40$^{\circ}$. In condition that the loading angle is 20$^{\circ}$, the mode-I fracture toughness is evaluated almost constant in the range of particle size less than I mm and loading rate less than 0.01 mm/s. This range of influence parameters seems appropriate condition for the tensile crack initiation at disc center and the control of stable crack propagation, which can give the reliance in evaluation of fracture toughness by Brazilian test.

  • PDF

Fracture Toughness Evaluation and Influence Parameter Analysis by Numerical Simulation of Brazilian Test (Brazilian 시험의 수치해석 시뮬레이션을 통한 파괴인성 산정 및 영향변수 분석)

  • Synn, Joong-Ho;Park, Chan;Shin, Hee-Soon;Chung, Yong-Bok;Lee, Hi-Keun
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.320-328
    • /
    • 2000
  • The numerical simulation of Brazilian fracture toughness test is carried out using PFC code and the influence parameters are analyzed such as shape of loading plane, size of Brazilian disc and unit particle of model, loading angle and loading rate. The flattened Brazilian disc is adopted for applying uniform load. The range of loading angle(2$\alpha$) necessary to induce the tensile crack at disc center and to obtain the load-displacement curve giving the critical load for the stable crack propagation is shown as 20°∼40°. In condition that the loading angle is 20°, the mode-I fracture toughness is evaluated almost constant in the range of particle size less than 1 mm and loading rate less than 0.01㎜/s. This range of influence parameters seems appropriate condition for the tensile crack initiation at disc center and the control of stable crack propagation, which can give the reliance in evaluation of fracture toughness by Brazilian test.

  • PDF

Cracking Behavior of Containment Wall of Nuclear Power Plant Reactor (원자력 발전소 격납건물 벽체의 균열거동)

  • Cho, Jae-Yeol;Kim, Nam-Sik;Cho, Nam-So;Choi, In-Kil
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.60-68
    • /
    • 2003
  • Tension tests of six half-thickness concrete containment wall elements were conducted as a part of Korea Atomic Energy Research Institute (KAERI) program. The aim of the KAERI test program is to provide a test-verified analytical method for estimating capacities of concrete reactor containment buildings under internal overpressurization from postulated degraded core accidents. The data from the tests reported herein should be useful for benchmarking analytical method that require modeling of material behavior including concrete cracking behavior and reinforcement/concrete interaction exhibited by the test. Major test variable is compressive strength of concrete, and its effect on the behavior of prestressed concrete panel subjected to biaxial tension is investigated.

Crack Form and Soil Physical Properties in Land Creeping area on Okjong, Hadong (하동군 옥종면 땅밀림 산사태지의 인장균열 형태와 토양 물리성 변화)

  • Kim, Ki-Dae;Park, Jen-Hyeon;Lee, Chang-Woo;Kang, Min-Jeng
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.4
    • /
    • pp.435-440
    • /
    • 2016
  • This study was carried out to examine of soil physical property and crack shape by collapse process on landslide area (by land creeping) in Hadong, Gyeongnam. We investigated morphological characteristics (length, depth, cut slope) between main crack and local crack, soil physical properties change between undisturbed section and disturbed section. As a result, morphological characteristics of crack showed no significant difference main crack between local crack. In case of soil physical property variation, soil liquid phase was significantly higher at 31-40 cm of soil depth in disturbed section. And this result is likely to be due to site factors.

The reliability analysis of Acoustic Emission(AE) testing for crack detectivity by sensors and materials (AE(음향방출) 검사 시 센서 및 재료에 따른 균열 검출능에 대한 신뢰성 분석)

  • Nam, Jun-Young;Lee, Sang-Yun;Hwang, Woong-Gi;Lee, Bo-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.419-423
    • /
    • 2011
  • Unlike other non-destructive inspection method, AE Structural defects that are likely to grow in the operation status can be detected, and the advantage of being due to the continuous monitoring of large structures has been widely used to evaluate the stability. AE sensor used to detect sound wave that occurs between 20kHz to 20MHz. and Sound wave result may vary depending on sensor's sensitivity. In this paper, Tensile test conducted on STS 304 and SS400, and tries to detect the crack signal. In tensile test, specimens were conducted using different sensor sensitivity to the same tensile test condition. The crack signal parameters divided into 4 types of communities by conducting cluster analysis. It was demonstrated that crack signal of two sensor is not different by statistical analysis of null hypotheses. Based on the results, waveform of this tension test is crack signal.

  • PDF

Torsional Resistance of RC Beams Considering Tension Stiffening of Concrete (콘크리트의 인장강성을 고려한 RC보의 공칭비틀림강도)

  • 박창규
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.24-32
    • /
    • 2002
  • The modified compression field theory is already applied in shear problem at some code(AASHTO-1998) partly. Nominal shear strength of concrete beam is sum of the concrete shcar strength and the steel shear strength in the current design code. But Torsional moment strength of concrete is neglected in the calculation of the nominal torsional moment strength of concrete beam In the current revised code. Tensile stress of concrete strut between cracks is still in effect due to tension stiffening effect. But The tensile stresses of concrete after cracking are neglected in bending and torsion In design. The torsional behavior is similar to the shear behavior in mechanics. Therefore the torsional moment strength of concrete should be concluded in the nominal torsional moment strength of reinforced concrete beam. This paper shows that the torsional moment strength of concrete is caused by the average principal tensile stress of concrete. To verify the validity of the proposed model, the nominal torsional moment strengths according to two ACI codes (89, 99) and proposed model are compared to experimental torsional moment strengths of 55 test specimens found in literature. The nominal torsional moment strengths by the proposed model show the best results.

Variation of Bilinear Stress-Crack Opening Relation for Tensile Cracking of Concrete at Early Ages (초기재령에서 콘크리트 인장균열에 대한 쌍선형 응력-균열 개구 관계의 변화)

  • Kwon, Seung-Hee;Choi, Kang;Lee, Yun;Park, Hong-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.427-435
    • /
    • 2010
  • One of the most vulnerable properties in concrete is tensile cracking, which usually happens at early ages due to hydration heat and shrinkage. In order to accurately predict the early age cracking, it needs to find out how stress-crack opening relation is varying over time. In this study, inverse analyses were performed with the existing experimental data for wedge-splitting tests, and the parameters of the softening curve for the stress-crack opening relation were determined from the best fits of the measured load-CMOD curves. Based on the optimized softening curve, variation of fracture energy over time was first examined, and a model for the stress-crack opening relation at early ages was suggested considering the found feature of the fracture energy. The model was verified by comparisons of the peak loads, CMODs at peak loads, and fracture energies obtained from the experiments and the inverse analysis.

A Study on the Characteristics and the Growth Mechanism of Surface Cracks from the Naksansa Seven-Storied Stone Pagoda, Korea (낙산사 칠층석탑에 발달한 표면균열의 특성과 성장 메커니즘)

  • Park, Sung-chul;Kim, Jae-hwan;Jwa, Yong-joo
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.2
    • /
    • pp.136-149
    • /
    • 2013
  • We studied the characteristics and the growth mechanism of surface cracks from the Naksansa seven-storied stone pagoda(Treasure No. 499). The pagoda is composed of both medium-grained, porphyritic biotite granite and hornblende-biotite granite. Alkali feldspar megacrysts are easily found as phenocrysts in the rocks. Surface cracks intensely developed at the lower part of the stone pagoda, and their directions are of vertical, horizontal, and diagonal. The rocks of the pagoda have intrinsic microcracks which can be defined as rift and grain rock cleavages. Both rock cleavages seems likely to have led to the crack growth and consequently to the mechanical deterioration of the pagoda. The vertical cracks developed parallel to the vertical compressive stress, whereas horizontal ones formed by tensile strength normal to the vertical compression. In addition mineral cleavages and twin planes of alkali feldspar phenocrysts seems to have been closely related to the mechanical breakdown of the rocks in the NE part of the pagoda.

Non-Linear Fracture Analysis of Concrete Composite (콘크리트 복합체의비선형 파괴해석)

  • 김상철
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.4
    • /
    • pp.187-196
    • /
    • 1997
  • 시멘트를 기초로하는 복합재료의 파괴거동은 주균열이 진행하기 이전에 파괴진행영역이라고 하는 미세균열대가 콘크리트 내부에 형성고기 때문에 선형파괴역하게 입각하여 해석하게 되면 실험치와 상당한 차이를 나타낸다. 이러한 문제점을 해결하기 위해 가상균열모델이나 균열띠 모델, 두 파라메터 파괴모델 등 비선형해석에 따른 여러 파괴역학모델들이 제안되었으나 이들 모델들은 2차원 해석에 근거를 두고 있기 때문에 구조체의 두께 방향으로 동일한 균열이 형성되며, 특히 콘크리트 실험에서 관찰되는 비연속적 균열발생에 대해서 설며이 어려웠다. 이에 본 연구는 콘크리트를하나의 다종복합체로 가정하고 연립변형모드 및 진행파괴모드 방향으로 구성재료를 배열한 상태에서 가상균열 이론에 근거한 비선형해석방법으로 모델링하였다. 진행파괴모드로 구성재료를 배열하면 강성이 높은 구성재료를 통과하여 균열이 진행될 때 균열선단으로부터 분포된 응력이 상층의 허용인장강도를 초과하게 되어 균열이 발생되며 이러한 균열은점진적인 균열진행과는 달리 비연속 동시 발생 균열ㄹ로 나타났다. 본 연구는 진행파괴모드에서의 파괴 해석 방법과연립변형모드에서의 해석 방법을 제시하였으며, 해석결과를 실험결과와 비교함으로써 검증하였다.

Crack-tip Stress Field of Fully Circumferential Surface Cracked Pipe Under Combined Tension and Thermal Loads (원주방향 부분 관통 균열이 존재하는 직관에 인장하중과 열하중의 복합하중이 가해지는 경우의 균열 선단 응력장)

  • Je, Jin Ho;Kim, Dong Jun;Kim, Yun Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1207-1214
    • /
    • 2014
  • Under excessive plasticity, the fracture toughness of a material depends on its size and geometry. Under fully yielded conditions, the stresses in a material near its crack tip are not unique but rather depend on the geometry. Therefore, the single-parameter J-approach is limited to a high-constraint crack geometry. The JQ theory has been proposed for establishing the crack geometry constraints. This approach assumes that the crack-tip fields have two degrees of freedom. In this study, the crack-tip stress field of a fully circumferential surface-cracked pipe under combined loads is investigated on the basis of the JQ theory by using finite element analysis. The combined loads are a tensile axial force and the thermal gradient in the radial direction. Q-stresses of the crack geometry and its loading state are used to determine the constraint effects. The constraint effects of secondary loading are found to be greater than those of primary loading. Therefore, thermal shock is believed to be the most severe loading condition of constraint effects.