• Title/Summary/Keyword: 인장파손특성

Search Result 58, Processing Time 0.027 seconds

Experimental Assessment of Tensile Failure Characteristic for Advanced Composite Laminates (첨단복합재료 적층판의 인장 파손특성 시험적 평가)

  • Lee, Myoung Keon;Lee, Jeong Won;Yoon, Dong Hyun;Kim, Jae Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.10
    • /
    • pp.959-965
    • /
    • 2017
  • In recent years, major airplane manufacturers have been using the laminate failure theory to estimate the strain of composite structures for airplanes. The laminate failure theory uses the failure strain of the laminate to analyze composite structures. This paper describes a procedure for the experimental assessment of laminate tensile failure characteristics. Regression analysis was used as the experimental assessment method. The regression analysis was performed with the response variable being the laminate failure strain and with the regressor variables being two-ply orientation ($0^{\circ}$ and ${\pm}45^{\circ}$) variables. The composite material in this study is a carbon/epoxy unidirectional (UD) tape that was cured as a pre-preg at $177^{\circ}C(350^{\circ}F)$. A total of 149 tension tests were conducted on specimens from 14 distinct laminates that were laid up at standard angle layers ($0^{\circ}$, $45^{\circ}$, $-45^{\circ}$, and $90^{\circ}$). The ASTM-D-3039 standard was used as the test method.

Study of Optical Fiber Sensor Systems for the Simultaneous Monitoring of Fracture and Strain in Composite Laminates (복합적층판의 변형파손 동시감지를 위한 광섬유 센서 시스템에 관한 연구)

  • 방형준;강현규;홍창선;김천곤
    • Composites Research
    • /
    • v.16 no.3
    • /
    • pp.58-67
    • /
    • 2003
  • To perform the realtime strain and fracture monitoring of the smart composite structures, two optical fiber sensor systems are proposed. The two types of the coherent sources were used for fracture signal detection - EDFA with FBG and EDFA with Fabry-Perot filter. These sources were coupled to EFPI sensors imbedded in composite specimens. To understand the characteristics of matrix crack signals, at first, we performed tensile tests using surface attached PZT sensors by changing the thickness and width of the specimens. This paper describes the implementation of time-frequency analysis such as short time Fourier transform (STFT) and wavelet transform (WT) for the quantitative evaluation of fracture signals. The experimental result shows the distinctive signal features in frequency domain due to the different specimen shapes. And, from the test of tensile load monitoring using optical fiber sensor systems, measured strain agreed with the value of electric strain gage and the fracture detection system could detect the moment of damage with high sensitivity to recognize the onset of micro-crack fracture signal.

A New Method to Determine the Characteristic Lengths for the Failure Analysis of Composite Joint (복합재 체결부의 파손해석을 위한 새로운 특성길이 결정 방법)

  • 안현수;권진희;최진호
    • Composites Research
    • /
    • v.16 no.4
    • /
    • pp.10-21
    • /
    • 2003
  • Proposed is a new method to determine the characteristic lengths for the failure analysis of composite joint without experiments. New method uses the result that the stress distribution in the characteristic length specimens is linearly proportional to the applied load. The compressive characteristic lengths calculated by the present method are exactly same as the lengths obtained by the conventional method based on experiment. The new tensile characteristic length is defined using the strength of the notched laminate, while previous methods use the strength of the sound laminate. That change allows calculating the tensile characteristic length numerically without experiment like the compressive characteristic length. Finite element analyses are conducted by MSC/NASTRAN. The interface between the fastener and laminate is modeled by the contact surface element. The finite element results based on the new characteristic lengths show the excellent agreement with experimental results for the Graphite/Epoxy composite .joints.

Design and Verification of a Novel Composite Sandwich Joint Structure (새로운 개념의 복합재 샌드위치 체결부 구조의 설계와 검증)

  • Kwak, Byeong-Su;Ju, Hyun-woo;Kim, Hong-Il;Dong, Seung-Jin;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.384-392
    • /
    • 2017
  • Sandwich panels with three different joint configurations were tested to design a novel sandwich joint structure that can effectively support both the tensile and compressive loads. The sandwich core was mainly aluminum flex honeycomb but the PMI foam core was limitedly applied to the ramp area which is transition part from sandwich to solid laminate. The face of sandwich panel was made of carbon fiber composite. For configuration 1, the composite flange and the sandwich panel were cocured. For configurations 2 and 3, an aluminum flange was fastened to the solid laminate by HI-LOK pins and adhesive. The average compressive failure loads of configurations 1, 2, and 3 were 295, 226, and 291 kN, respectively, and the average tensile failure loads were 47.3 (delamination), 83.7 (bolt failure), and 291 (fixture damage) kN, respectively. Considering the compressive failure loads only, both the configurations 1 and 3 showed good performance. However, the configuration 1 showed delamination in the corner of the composite flange under tension at early stage of loading. Therefore, it was confirmed that the structure that can effectively support tension and compressive loads at the same time is the configuration 3 which used a mechanically fastened aluminum flange so that there is no risk of delamination at the corner.

Testing and Numerical Analysis on the Fracture Characteristics of Composite Adhesive Bonded Single-Lap Joints (복합재료 Single-Lap 본딩 조인트의 파괴 특성에 대한 실험 및 수치해석 연구)

  • 김광수;박재성;장영순;이영무
    • Composites Research
    • /
    • v.16 no.5
    • /
    • pp.45-53
    • /
    • 2003
  • The experimental and numerical investigations on the failure characteristics of the secondary bonded composite single-lap joints were performed. The initiations and growths of cracks were observed using CCD camera and acoustic emission sensor during the tension tests of the joint specimens. The structural behaviors of the specimens were predicted by the geometric nonlinear two-dimensional finite element analysis. The three types of observed initial cracks were included in each finite element models and the strain energy release rates of each specimen models were calculated by VCCT(Virtual Crack Closure Technique) technique. The tension tests showed that the initial cracks occurred in the 60∼90% of final failure loads and the major failure modes of the specimens were adhesive failure and the delamination between the 1st and 2nd ply of laminate. The specimens with the thicker bondline had earlier crack initiation loads but higher crack propagation resistance and eventually better loading capability. The delaminations were mostly observed in the thicker bondline specimens. The mode I values of calculated strain energy release rates were higher than the mode II values in the all specimen models considering the three types of initial cracks. The mode I and total strain energy release rates were calculated as higher values in the order of initial crack in the edge interface, comer interface and delamination between the plies of laminate.

A Study on the Fracture Behavior of Composite Laminated T-Joints Using AE (AE를 이용한 복합재료 T 조인트부의 파괴거동에 관한 연구)

  • Kim, J.H.;Ahn, B.W.;Sa, J.W.;Park, B.J.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.4
    • /
    • pp.277-287
    • /
    • 1999
  • Quasi-static tests such as monotonic tension and loading/unloading tension were performed to investigate the bond characteristics and the failure processes for the T-joint specimens made from fiber/epoxy composite material. Two types of specimens, each consists of two components, e. g. skin and frame. were manufactured by co-curing and secondary bonding. During the monotonic tension test, AE instrument was used to predict AE signal at the initial and middle stage of the damage propagation. The damage initiation and progression were monitored optically using m (Charge Coupled Device) camera. And the internal crack front profile was examined using ultrasonic C-scan. The results indicate that the loads representing the abrupt increase of the AE signal are within the error range of 5 percent comparing to the loads shown in the load-time curve. Also it is shown that the initiation of crack occurred in the noodle region for both co-cured and secondarily bonded specimen. The final failure occurred in the noodle region for the co-cured specimen. but at the skin/frame termination point for the secondarily bonded specimen. Based on the results, it was found that two kinds of specimen show different failure modes depending on the manufacturing methods.

  • PDF

A Method to Predict the Open-Hole Tensile Strength of Composite Laminate (원공을 가지는 복합재 적층판의 인장강도 예측 기법)

  • Lee, Heun-Ju;Shin, In-Soo;Jeong, Mun-Gyu;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Composites Research
    • /
    • v.24 no.4
    • /
    • pp.29-35
    • /
    • 2011
  • The characteristic length method used to determine a laminate's strength generally requires the test for un-notched and notched laminates and finite element analysis together. In this paper, the methods used to predict the stress distribution and tensile characteristic length of open-hole laminates using the stress concentration factor and equivalent material properties are proposed. These methods do not require data on the failure load of open-hole laminates or finite element analysis. Once the stress and characteristic length have been determined, the failure load of the open-hole laminate can be calculated. The proposed method considers the effect of the material properties as a parameter and therefore can be applied to a variety of materials. The stress distribution is verified by comparing with a finite element analysis and test results. The predicted failure load shows a maximum deviation of 8% from the test results.

A Study on Strength Prediction of Mechanical Joint of Composite under Bending Load (굽힘 하중을 받는 복합재 기계적 체결부의 강도예측에 관한 연구)

  • Baek, Seol;Kang, Kyung-Tak;Lee, Jina;Chun, Heoung-Jae
    • Composites Research
    • /
    • v.27 no.6
    • /
    • pp.213-218
    • /
    • 2014
  • This paper predicted the strength of mechanical joint of composites under bending load by means of the characteristic curve method. The method has been employed only for tensile and compression load conditions, but in this study, this method was extended to the bending load condition. For the finite element analysis (FEA), the nonlinear analysis was conducted considering the contact and friction effects between composite material and pin. The failure strength and mode on characteristic curve were evaluate with Tsai-Wu failure theory. To validate the results of FEA, the experiments were conducted to find out the failure load by applying bending moment on the composite specimens. The results showed reasonable agreements with theoretical results. These results lead to a conclusion that the characteristic curve method can be applied to predict the bending strength of mechanical joint of composites.

The Effect of Hole Size on the Failure Strength and Fracture Toughness in Polymer Matrix Composite Plates (Plastic기 복합재료의 파손강도 및 파괴인성에 미치는 원공크기의 영향)

  • Kim, Jeong-Gyu;Kim, Do-Sik
    • Korean Journal of Materials Research
    • /
    • v.3 no.2
    • /
    • pp.197-204
    • /
    • 1993
  • Abstract The effects of the hole size and the specimen width on the fracture behavior of several fabric composite plates are experimentally investigated in tension. Tests are performed on plain woven glass/ epoxy, plain woven carbon/epoxy and satin woven glass/polyester specimens with a circular hole. It is shown in this paper that the characteristic length according to the point stress criterion depends on the hole size and the specimen width. An excellent agreement is found between the experimental results and the analytical predictions of the modified failure criterion. The notched strength increase with an increase in the damage ratio, which is explained by a stress relaxation due to the formation of damage zone. When the unstable fracture occurred, the critical crack length equivalent for the damage zone is about twice the characteristic length. The critical energy release rate $G_c$ is independent of hole size for the same specimen width. The variation of $G_c$ according to the material system, fiber volume fraction and specimen width relates to the notch sensitivity factor. $G_c$ increases with a decrease in the notch sensitivity factor, which can be explained by a stress relaxation due to the increase of damage zone.

  • PDF

Applications of fracture mechanics into tire and rubber (타이어나 고무제품에 파괴역학의 응용)

  • 이억섭
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.34-45
    • /
    • 1989
  • 성장하는 균열에 의한 변형 에너지해방에 기반을 둔 간단한 파괴역학적인 접근법이 고무의 여러가지 특성을 규명하는데 성공적으로 응용되는 예들을 논의하였다. 이 방법은 전통적인 강도, 즉 찢김, 균열성장, 피로, 인장파손 등 뿐만 아니라 오존내습(ozone attack), 예리한 공구들에 의한 마쇄, 절단현상을 규명하는데도 응용가능함을 밝혔다. 특히 에너지해방율은 여러가지의 다른 시험편에 대한 실험값들이 서로 연관성을 갖도록 허용하기 때문에 매우 유용한 특성이라 할 수 있다.

  • PDF