• Title/Summary/Keyword: 인양력

Search Result 14, Processing Time 0.021 seconds

The Fundamental Research on Lifting-Work for Excavator Safety Management (굴삭기 안전 관리를 위한 인양작업에 관한 기초연구)

  • Lee, Yongsu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6D
    • /
    • pp.811-818
    • /
    • 2011
  • Though an excavator is classified as an equipment utilizing a shovel in earthworks, it has been frequently used in lifting work. In this view, lifting capacity is classified as the main functions of the excavator. Thus, its accurate functions need to be provided. However, in domestic conditions, the necessity for the functions of lifting capacity are not perceived. This study shows 1) Many researches about lifting-work of excavators abroad are used as basic data necessary for domestic introduction. 2) For domestic excavators without the information of lifting-work, methodologies of lifting-work available are suggested and reviewed. 3)Lifting zones are divided into safety and caution lifting zones. The information on lifting capacity and lifting zones will be able to used as objective and substantive bases to operational planning and safety management.

Calculation of 4 Crane Lifting Forces for a Sunken Ship (4기 크레인에 의한 첨물 선체의 인양력 계산)

  • 이상갑
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.17-22
    • /
    • 2000
  • This study focuses on a simple analytical approach to calculate crane lifting forces for a sunken ship. The method takes into account the relation of lifting forces acting in wire rope slings to the inclination of the vessel including the effect of lug positions. The importance of the sunken ship salvage is explained from the statistics of ship casualties during last 15 years. Euler angles are introduced to represent the inclination of a sunken ship in developing the static force and moment equations,. Three dimensional examples with one redundant degree of freedom for a GT1500 oil tanker are analyzed and the results show that the information obtained by the method could be useful to salvors to conduct salvage work.

  • PDF

Lifting Analysis for a Sunken Ship in Consideration of Elongation of Crane Ropes (크레인 로프의 신장을 고려한 침몰선체의 인양력 해석)

  • CHOI KYUNG-SIK;SHIN MAENG-KEE
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.3 s.52
    • /
    • pp.33-38
    • /
    • 2003
  • This study focuses on an analytical approach to calculate crane-lifting forces for a sunken ship, with consideration to elongation of crane ropes. The method takes into account the relation of lifting forces acting in wire rope slings to the inclination of the ship's hull, including the effect of lug positions. For lifting analysis, the Euler angles are defined to represent the inclination of a sunken ship in developing the static force and moment equations. An additional compatibility condition is introduced in order to solve an indeterminate lifting analysis problem with 4 cranes. A set of lifting forces along the 4 crane ropes is calculated. A 3-dimensional example of the G/T 1500 oil tanker is analyzed. The results show that the information obtained by the method could be useful to engineers when conducting salvage work.

Closing Analysis of Symmetric Steel Cable-stayed Bridges and Estimation of Construction Error (대칭형 강 사장교의 폐합해석과 시공오차의 예측)

  • Lee, Min Kwon;Lee, Hae Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.55-65
    • /
    • 2006
  • This paper presents the closing analysis of a symmetric steel cable-stayed bridge erected by a free cantilever method. Two independent structural systems are formed before the closing procedure of a bridge is performed, and thus the compatibility conditions for vertical displacement and rotational angle are not satisfied at the closing section without the application of proper sectional forces. Since, however, it is usually impossible to apply sectional forces at the closing section, the compatibility conditions should be satisfied by proper external forces that can be actually applicable to a bridge. Unstrained lengths of selected cables and the pull-up force of a derrick crane are adjusted to satisfy nonlinear compatibility conditions, which are solved iteratively by the Newton-Raphson method. Cable members are modeled by the elastic catenary cable elements, and towers and main girders are discretized by linear 3-D frame elements. The sensitivities of displacement with respect to the unstrained lengths of selected cables and the pull-up force of the derrick crane are evaluated by the direct differentiation of the equilibrium equation. A Monte-Carlo simulation approach is proposed to estimate expected construction errors for a given confidence level. The proposed method is applied to the second Jindo Grand Bridge to demonstrate its validity and effectiveness.

Lifting Analysis for a Sunken Ship in Consideration of Elongation of Crane Ropes (크레인 로프의 신장을 고려한 침몰선체의 인양력 해석)

  • Choi, Kyung-Sik;Shin, Maeng-Kee
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.179-184
    • /
    • 2003
  • This study focuses on an analytical approach to calculate crane lifting forces for a sunken ship in consideration oj elongation of crane ropes. The method takes into account the relation of lifting forces acting in wire rope slings to the inclination of the ship's hull including the effect of lug positions. For lifting analysis, the Euler angles are defined to represent the inclination of a sunken ship in developing the static force and moment equations. An additional compatability condition is introduced in order to solve an indeterminate lifting analysis problem with 4 cranes and a set of lifting forces along the 4 crane ropes is calculated. A 3-dimensional example of the G/T 1500 oil tanker is analyzed and the results show that the information obtained by the method could be useful to engineers to conduct salvage work.

  • PDF

Lifting Analysis for Ship Hull Blocks using 4 Cranes (4기 크레인을 이용한 선체블록의 인양력 해석)

  • 최경식;김동준
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.2
    • /
    • pp.98-105
    • /
    • 2004
  • This study focuses on an analytical approach to calculate four crane lifting forces for heavy ship hull blocks considering elongations of lilting slings. Four-crane-lifting is a redundant problem. During lifting procedures, in addition to the force and moment equilibrium equations, a compatibility condition is introduced to determine 4 unknown lifting forces. For verification of the method, a ship hull block with field measurements data is analyzed and the result shows that the information obtained by current method could be useful to engineers to conduct lifting work at shipyards.

Development of Rope Winding Device for Safety Fishing Operation of Small Trap Fishing Vessel (소형 통발어선의 안전조업을 위한 로프 권양장치 연구)

  • Kim, Dae-Jin;Jang, Duck-Jong;Park, Ju-Sam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.19-29
    • /
    • 2022
  • The result of a questionnaire survey conducted on fishermen using coastal fish traps shows that fall accidents during trap dropping and pulling constitute the highest proportion of accidents at 42.1 %, whereas slipping accidents on the deck or stricture accidents to the body due to the trap winding device constitute 21.1 % each. In addition, 53.2 % of all surveyed subjects responded that trap pulling is the most dangerous task, followed by fish sorting 33.8 %, and trap dropping 9.1 %. As for the main items requested by fishermen for improving the trap winding device, 36.8 % indicated a method to easily lift the trap from the water to the work deck, and 31.6 % indicated a method to overcome the rope tension and prevent slip when pulling the trap to reduce the accidents. The small trap fishing vessel winding device proposed herein can increase the winding force by strengthening the rope contact area and friction coefficient via an appropriate contact angle between the driving roller of the winding device and the rope. When the contact angles between the driving roller and the rope are 1°, 5°, 9°, 14° and 19°, the rope tension showed a difference according to each contact angle. When the contact angle is 9°, the rope tension is the highest at 392.62 kgf. Based on these experimental results, a prototype winding device is manufactured, and 25 traps are installed on a rope with a total length of 100 m at 4 m intervals in the sea, and then the rope tension is measured during trap pulling. As a result, the rope tension increases rapidly at the initial stage of trap pulling and shows the highest value of 31.89 kgf, which subsequently decreases significantly. Therefore, it is appropriate to design the winding force of a small trap fishing vessel winding device based on the maximum tension value of the rope specified at the beginning of the trap pulling operation.

Physics-based Salvage Simulation for Wrecked Ship Considering Environmental Loads (환경 하중을 고려한 침몰 선체의 물리 기반 인양 시뮬레이션)

  • Ham, Seung-Ho;Roh, Myung-Il;Kim, Ju-Sung;Lee, Hye-Won;Ha, Sol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.5
    • /
    • pp.387-394
    • /
    • 2015
  • Before salvaging a wrecked ship, the physics-based simulation is needed to predict lifting force before real operation by floating crane or barge. Procedures affecting lifting force for the salvage can be divided into three stages. At the first stage, the bottom breakout force for the wrecked ship to escape from seabed sediment should be calculated. At the second step, the current force acting on the wrecked ship while lifting from the seabed to near sea surface should be considered. Finally, buoyancy change near at the sea surface when the wrecked ship start to escape from the water should be considered. In the previous studies, only the breakout force at the first stage was calculated based on simple assumption of embedment depth and contact area of the wrecked ship. Therefore, we develop a program for salvage simulation including whole stages. It is composed of four modules such as the equations of motion, time integration, force calculation, and visualization. As a result, it is applied to simulate lifting the wrecked ship according to various environmental loads including seabed sediments.

Closing Step Analysis in Cable-Stayed Bridges to Produce Initial Equilibrium Condition (초기평형상태 구현을 위한 사장교의 폐합단계 해석)

  • Park, Yong Myung;Yun, Jae Sun;Cho, Hyun Jun;Park, Chung Gon
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.2
    • /
    • pp.191-199
    • /
    • 2007
  • This paper presents a closing method for a cable-stayed bridge erected by the free cantilever method to produce the initial equilibrium configuration at the final construction stage. To realize the initial equilibrium condition in cable-stayed bridge by the cantilever method, compatibility conditions for vertical displacements, rotational angles, and axial displacements at the closing section of both side girders should be satisfied. In this paper, it was shown that it can be accomplished by using some applicable loads during construction such as the pull-up force of the derrick crane, some cable tension forces, and jacking force at the pylon. The proposed method was applied to a construction stage analysis of a sample bridge to demonstrate its validity, and it was acknowledged that the tower was considerably affected by the compatibility condition for axial displacement in the closing step.