• 제목/요약/키워드: 인식 성능

검색결과 4,656건 처리시간 0.03초

제한된 언어 자원 환경에서의 다국어 개체명 인식 (Multilingual Named Entity Recognition with Limited Language Resources)

  • 천민아;김창현;박호민;노경목;김재훈
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2017년도 제29회 한글및한국어정보처리학술대회
    • /
    • pp.143-146
    • /
    • 2017
  • 심층학습 모델 중 LSTM-CRF는 개체명 인식, 품사 태깅과 같은 sequence labeling에서 우수한 성능을 보이고 있다. 한국어 개체명 인식에 대해서도 LSTM-CRF 모델을 기본 골격으로 단어, 형태소, 자모음, 품사, 기구축 사전 정보 등 다양한 정보와 외부 자원을 활용하여 성능을 높이는 연구가 진행되고 있다. 그러나 이런 방법은 언어 자원과 성능이 좋은 자연어 처리 모듈(형태소 세그먼트, 품사 태거 등)이 없으면 사용할 수 없다. 본 논문에서는 LSTM-CRF와 최소한의 언어 자원을 사용하여 다국어에 대한 개체명 인식에 대한 성능을 평가한다. LSTM-CRF의 입력은 문자 기반의 n-gram 표상으로, 성능 평가에는 unigram 표상과 bigram 표상을 사용했다. 한국어, 일본어, 중국어에 대해 개체명 인식 성능 평가를 한 결과 한국어의 경우 bigram을 사용했을 때 78.54%의 성능을, 일본어와 중국어는 unigram을 사용했을 때 각 63.2%, 26.65%의 성능을 보였다.

  • PDF

한국어 숫자음 인식을 위한 이산분포 HMM과 연속분포 HMM의 성능 비교 연구 (A Comparison of Discrete and Continuous Hidden Markov Models for Korean Digit Recognition)

  • 홍형진
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1994년도 제11회 음성통신 및 신호처리 워크샵 논문집 (SCAS 11권 1호)
    • /
    • pp.157-160
    • /
    • 1994
  • 본 논문에서는 한국어 숫자음 인식에 대한 이산분포 HMM과 연속분포 HMM의 인식 성능을 비교하였다. 일반적으로 연속분포 HMM은 많은 계산량이 필요하고, 학습시 초기값이 매우 민감하다는 단점이 있지만, 이산분포 HMM의 VQ로 인한 왜곡을 제거함으로써 인식률을 향상시킬 수 있다. 여기서는 성능비교를 위해서 mel-cepstrum의 분석차수, 이산분포 HMM의 codebook 크기, 연속분포 HMM의 miture 개수등에 따른 인식성능을 비교하였다. 실험 결과 이산분포 HMM에서는 mel-cepstrum 벡터가 14차이고, codebook 크기가 64일 때 가장 좋은 성능을 나타냈으며, 연속부포 HMM에서는 mel-cepstrum 벡터가 16차이고 miture가 3개일 때 가장 좋은 결과를 얻을 수 있었다. 특히 학습 데이터의 양이 적은 경우에는 연속분포 HMM이 이산분포 HMM보다 더 좋은 인식률을 나타내었다.

  • PDF

전화망을 통한 핵심어 검출 시스템에서의 채널왜곡 보상벙법의 성능비교 (Performance Comparision of Channel distortion Compensation Techniques in Keyword Spotting System over the Telephone Network)

  • 이교혁
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1996년도 영남지부 학술발표회 논문집 Acoustic Society of Korean Youngnam Chapter Symposium Proceedings
    • /
    • pp.56-60
    • /
    • 1996
  • 본 논문에서 핵심어 검출(Keyword spotting ) 시스템에서의 채널 왜곡에 대한 보상방법등의 성능을 비교하였다. 훈련을 음성과 인식실험용 음성은 서로 다른 환경에서 수집되었으며, 특별히 인식실험용 음성으로는 전화망을 통한 음성 데이터를 이용하였다. 전화망을 통한 음성인식에서는 채널왜곡과 부가잡음에 의해서 음성신호에 왜곡이 생기므로 이들에 대한 적적한 보상이 필요하다. 본 논문에서는 채널 왜곡보상을 위한 처리방법으로 널리 사용되고 있는 global cepstral mean substraction (GCMS), local cepstral mean subtraction(LCMS) 그리고 RASTA processing을 적용하였다. 그리고 인식성능의 개선을 위해 이들 방법을 likelihood ration scorning 에 의한 후처리 과정을 적용하였다. 인식실험결과 이들 방법 모두 채널왜곡 보상을 하지 않았을 경우와 비교하여 더 좋은 인식성능을 얻을 수 있었으며, 그 중 후처리를 적용한 LCMS 방법이 가장 우수한 성능을 나타내었다.

  • PDF

Nonstationary HMM을 이용한 다중 카메라 기반 장소 인식 (Multi-Camera-based Place Recognition using Nonstationary HMM)

  • 민경민;이성훈;김동호;김진형
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2007년도 학술대회 1부
    • /
    • pp.50-57
    • /
    • 2007
  • 사용자가 현재 위치해 있는 장소를 알아내는 것은 상황인식 분야에서 활발히 연구되고 있는 분야중 하나로, 이를 위해서 사용자의 몸에 다양한 센서를 장착하고 그 센서로부터 추출되는 데이터를 분석하여 사용자의 위치를 인식하는 연구가 많이 이루어져왔다. 본 논문에서는, 사용자의 몸에 장착된 카메라로부터 얻어진 영상을 이용하여 사용자의 현재 장소를 인식하는 장소 인식 시스템을 제안한다. 기존의 방법론들에 비해서 높은 성능을 보이기 위해서 본 논문에서는 두 가지 방법을 제안하였다. 먼저 한 방향만의 영상으로는 인식이 어려운 장소에서도 좋은 인식 성능을 보일 수 있도록 하기 위해, 여러 대의 카메라를 동시에 사용하여 여러 방향의 영상을 얻어내는 방법을 제안하였다. 또한 이전 시간의 장소 인식 결과로부터 현재 시간의 장소를 추론하는 데에 있어서, 각 장소들에 대해 알고 있는 사전지식을 보다 많이 적용할 수 있는 인식 모델을 제안하였다. 실제 대학 실내 환경에서의 실험을 통하여, 제안한 방법을 이용한 장소 인식기법이 좋은 성능을 보임을 확인할 수 있었다.

  • PDF

대어휘 연속음성 인식 시스템의 성능평가 (Performance Evaluation of Large Vocabulary Continuous Speech Recognition System)

  • 김주곤;정현열
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2002년도 하계학술발표대회 논문집 제21권 1호
    • /
    • pp.99-102
    • /
    • 2002
  • 본 논문에서는 한국어 대어휘 연속음성 인식 시스템의 성능향상을 위하여 Multi-Pass 탐색 방법을 도입하고, 그 유효성을 확인하고자 한다. 연속음성 인식실험을 위하여, 최근 실험용으로 널리 사용되고 있는 HTK와 Multi-Pass 탐색 방법을 이용한 음성인식 시스템의 비교 실험을 수행한다. 대어휘 연속음성 인식 시스템에 사용한 언어 모델은 ARPA 표준 형식의 단어 N-gram 언어모델로, 1-pass에서는 2-gram 언어모델을, 2-pass 에서는 역방향 3-gram 언어모델을 이용하여 Multi-Pass 탐색 방법으로 인식을 수행한다. 본 논문에서는 Multi-Pass 탐색 방법을 한국어 연속음성인식에 적합하게 구성한 후, 다양한 한국어 음성 데이터 베이스를 이용하여 인식실험을 수행하였다. 그 결과, 전화망을 통하여 수집된 잡음이 포함된 증권거래용 연속음성 데이터 베이스를 이용한 연속음성 인식실험에서 HTK가 $59.50\%$, Multi-Pass 탐색 방법을 이용한 시스템은 $73.31\%$의 인식성능을 나타내어 HTK를 이용한 연속음성 인식률 보다 약 $13\%$의 인식률 향상을 나타내었다.

  • PDF

영상 정규화 및 얼굴인식 알고리즘에 따른 거리별 얼굴인식 성능 분석 (Performance Analysis of Face Recognition by Distance according to Image Normalization and Face Recognition Algorithm)

  • 문해민;반성범
    • 정보보호학회논문지
    • /
    • 제23권4호
    • /
    • pp.737-742
    • /
    • 2013
  • 최근 감시시스템은 휴먼인식 기술을 활용하여 스스로 판단하고 대처할 수 있는 지능형으로 발전하고 있다. 기존 얼굴인식 기술은 근거리에서 인식성능이 우수하지만 원거리로 갈수록 인식률이 떨어진다. 본 논문에서는 원거리 휴먼인식을 위해 거리별 얼굴영상을 학습으로 사용한 얼굴인식에서 보간법 및 얼굴인식 알고리즘에 따른 얼굴인식률의 성능을 분석한다. 영상 정규화에는 최근접 이웃, 양선형, 양3차회선, Lanczos3 보간법을 사용하고, 얼굴인식 알고리즘은 PCA와 LDA를 사용한다. 실험결과, 영상 정규화로 양선형 보간법과 얼굴인식 알고리즘으로 LDA를 사용했을 때 우수한 성능을 나타냄을 확인하였다.

음성 특성 지표를 이용한 음성 인식 성능 예측 (Speech Recognition Accuracy Prediction Using Speech Quality Measure)

  • 지승은;김우일
    • 한국정보통신학회논문지
    • /
    • 제20권3호
    • /
    • pp.471-476
    • /
    • 2016
  • 본 논문에서는 음성 특성 지표를 이용한 음성 인식 성능 예측 실험의 내용을 소개한다. 선행 실험에서 효과적인 음성 인식 성능 예측을 위해 대표적인 음성 인식 성능 지표인 단어 오인식률과 상관도가 높은 여러 가지 특성 지표들을 조합하여 새로운 성능 지표를 제안하였다. 제안한 지표는 각 음성 특성 지표를 단독으로 사용할 때 보다 단어 오인식률과 높은 상관도를 나타내 음성 인식 성능을 예측하는데 효과적임을 보였다. 본 실험에서는 이 결과를 근거하여 조합에 사용된 음성 특성 지표를 채택하여 4차원 특징 벡터를 생성하고 GMM 기반의 음성 인식 성능 예측기를 구축한다. 가우시안 요소를 증가시키며 실험한 결과 제안된 시스템은 babble 잡음, 자동차 잡음에서 모두 SNR이 낮을수록 단어 오인식률을 높은 확률로 예측함을 확인하였다.

얼굴인식 시스템의 시나리오 기반 평가 방법론 (Evaluation of Face Recognition System based on Scenarios)

  • 맹두열;홍병우;김성조
    • 한국멀티미디어학회논문지
    • /
    • 제13권4호
    • /
    • pp.487-495
    • /
    • 2010
  • 바이오인식 (Biometrics) 시스템의 사용이 보편화 되면서 그들의 성능에 대해서 보다 정확하고 안정된 평가를 제공하는 방법이 요구된다. 다양한 바이오 인식 기술 중에서 얼굴인식 기술이 널리 사용되고 있으며 안정적인 얼굴인식 시스템의 개발을 위한 지표를 마련하고 얼굴인식 시스템이 제공해야 하는 성능에 대한 기준을 제시하기 위해서 얼굴인식 시스템의 성능을 평가해야 할 필요성이 커지게 되었다. 하지만 얼굴인식 시스템의 성능에 영향을 미치는 요소들이 매우 다양하고 복잡하기 때문에 얼굴인식 시스템의 성능을 평가하는 것은 어려운 일이다. 그렇기 때문에 이러한 환경요소에 대해서 개별적으로 평가하는 것보다 종합적으로 얼굴인식 시스템의 활용 시나리오를 기반으로 평가하는 것이 보다 효율적이고 효과적이다. 이 논문에서는 얼굴인식 시스템에 영향을 미치는 환경변수들을 분석하고 그 환경변수들을 고려하는 얼굴인식 시스템에 대한 평가방법을 제안하는 것을 목적으로 한다. 특별히 환경변수들을 개별적으로 평가하는 것이 아니고 그들의 조합을 고려하는 시나리오를 기반으로 평가하는 방법을 제안한다. 또한 일반적인 환경을 가정하는 시나리오 예시를 통해서 얼굴인식 시스템을 종합적인 환경변수를 고려하여 평가하는 것을 보여주었다.

정규화된 Mel-cepstrum을 이용한 숫자음 인식성능 향상에 관한 연구 (An Improved Digit Recognition using Normalized mel-cepstrum)

  • 이기철
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1994년도 제11회 음성통신 및 신호처리 워크샵 논문집 (SCAS 11권 1호)
    • /
    • pp.403-406
    • /
    • 1994
  • 음성은 화자의 상태 및 주변 환경에 따라 그 특징이 다양하게 변화한다. 본 논문에서는 음성신호의 특징 파라미터로 널리 쓰이고 있는 mel-cepstrum에 대해, 단어내에서의 변화를 정규화함으로써 인식성능을 향상시키고자 하였다. mel-cepstrum이란 단어 전체에 대한 mel-cepstrum의 평균 값으로 normalize 시킨 것이다. 한국어 숫자음에 대한 인식 실험결과, 본 논문에서 제안한 정규화된 mel-cepstrum이 정규화되지 않은 mel-cepstrum에 비해 우수한 인식 성능을 나타내었다. 또한 잡음 환경하에서 비교 실험한 결과에서도 상대적으로 우수한 인식률을 보였다.

  • PDF

입모양 변화에 의한 영상음성 인식에 관한 연구 (A Study on the Visual Speech Recognition based on the Variations of Lip Shapes)

  • 이철우;계영철
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2001년도 춘계학술대회 발표논문집
    • /
    • pp.188-191
    • /
    • 2001
  • 본 논문에서는 화자의 입모양의 변화를 분석하여 발음된 음성을 인식하는 방법에 관하여 연구하였다. 입모양 변화를 나타내는 특징벡터의 서로 다른 선택이 인식성능에 미치는 영향을 비교 분석하였다. 특징벡터로서는 ASM(Active Shape Model) 파라메터와 Acticulatory 파라메터를 특별히 선택하여 인식성능을 비교하였다. 모의실험 결과, Articulatory 파라메터를 사용하는 것이 인식성능도 더 우수하고 계산량도 더 적음을 확인할 수 있었다.