• Title/Summary/Keyword: 인식 경계

검색결과 665건 처리시간 0.024초

유사변환에 불변인 국부적 특징과 광역적 특징 선택에 의한 자동 표적인식 (Automatic Target Recognition by selecting similarity-transform-invariant local and global features)

  • 선선귀;박현욱
    • 대한전자공학회논문지SP
    • /
    • 제39권4호
    • /
    • pp.370-380
    • /
    • 2002
  • 전방 관측 적외선 영상에서 가려짐이 없거나 가려짐이 있는 군용차량을 인식할 수 있는 자동 표적인식 알고리즘을 제안한다. 표적을 배경으로부터 분리한 후에 광역적인 형상 특징을 찾기 위해 표적의 경계선에 대해 물체의 중심을 기준으로 방사함수 (radial function)를 정의한다. 또한, 형상 정보가 집중되어 있는 표적의 윗 부분으로부터 국부적인 형상 특징을 찾기 위해 두 개의 특징점과 경계선으로부터 거리함수를 정의한다. 두 개의 함수와 경계선으로부터 4개의 광역적 형상 특징과 4개의 국부적 형상 특징을 제안한다. 이 특징들은 병진, 회전 그리고 크기변화에 대해 기존의 특징 벡터들 보다 좋은 불변성을 가진다. 이 특징들을 이용하여 가려짐이 있는 표적과 가려짐이 없는 표적을 구분하여 인식하기 위한 새로운 분류 방식을 제안한다. 실험을 통해 제안한 특징들의 불변성과 인식 성능을 기존의 특징벡터들과 비교하여 제안한 표적 인식 알고리즘의 우수성을 입증한다.

RED Filtering과 Mask Matching을 이용한 화재위치 인식 (Recognition of Fire Position and Region using RED Filtering and Mask Matching)

  • 백동현;김장원
    • 한국화재소방학회논문지
    • /
    • 제19권4호
    • /
    • pp.64-68
    • /
    • 2005
  • 본 논문에서는 방범 및 보안설비로 설치된 CCD카메라로 화재가 발생한 지역의 영상을 획득하였을 때, 빠른시간 안에 화재 발생위치를 인식하고 경보를 발령할 수 있는 시스템을 연구하였다. 화재발생 지역 중 불꽃부위만을 효과적으로 추출할 수 있는 방법으로 RED Filtering법을 제안하였고, 불꽃부위 경계를 추출하기 위하여 2치 영상기법을 적용하였으며, Mask추출과 정합을 이용하여 화재가 발생한 위치 및 지역을 인식할 수 있도록 하였다. 실험결과, 불꽃과 복잡한 경계부분도 효과적으로 추출되었으며 원영상과의 정합을 통해 화재 발생위치를 효과적으로 인식하여 제안한 알고리즘의 타당성을 확인하였다

학령기 경계선 지능 아동의 학교에 대한 주관적 인식 유형 연구: Q방법론 적용 (A Study used Q-methodology on the Subjective Cognition-Patterns of School Aged Children with Borderline Intelligence Function to the School)

  • 이금진
    • 한국콘텐츠학회논문지
    • /
    • 제17권2호
    • /
    • pp.384-393
    • /
    • 2017
  • 본 연구는 학령기 경계선 지능 아동을 대상으로 Q방법론을 적용하여 '학교'에 대한 주관적 인식유형과 특성을 파악하고자 하였다. Q표본은 학계 및 현장전문가 4인, 경계선 지능 아동 4인에 대한 심층면접과 관련 문헌고찰을 통해 21개를 선정하였고, P표본은 초등학교에 재학 중인 경계선 지능 아동 총 18명의 학부모와 본인의 동의를 거쳐 표집하였다. P표본은 5점 척도의 정규분포로 Q분류를 실시하였고 수집된 데이터는 Quanl PC 프로그램을 통해 분석하였다. 연구결과 학령기 경계선 지능아동의 학교에 대한 태도유형은 '참여적-의존형'과 '방관적-위축형'의 두 가지 유형으로 도출되었다. 본 연구결과를 통해 학교에 대한 태도는 아동의 자존감 및 가족 지지환경의 양상에 따라 달라질 수 있으며 각 유형별 소속감의 욕구와 안전의 욕구에 대한 적절한 교육복지적 개입이 필요함을 알 수 있었다. 본 연구결과는 경계선 지능아동의 학교에 대한 주관적 유형을 구체화함으로써 경계선 지능 아동이 초등교육을 통해 중등교육 이상의 교육 권리와 학습의 질을 유지하도록 돕기 위한 교육중재 방안에 기초자료를 제공했다는 점에서 함의가 있다.

ART2 알고리즘에서의 경계 변수 설정 방법 (Setting Method of Vigilance Parameter of ART2 Algorithm)

  • 박성열;김성훈;김광백
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2008년도 제39차 동계학술발표논문집 16권2호
    • /
    • pp.31-34
    • /
    • 2009
  • ART2 알고리즘은 신경 회로망 모델로서 실시간 학습이 가능하여 저속 및 고속을 지원할 뿐만 아니라 지역 최소화(local minima) 문제가 발생하지 않는 장점을 갖는다. 그러나 ART2 알고리즘은 경계 변수 설정에 따라 클러스터의 수가 달라지며, 이러한 경계 변수 설정은 패턴의 분류와 인식 성능을 좌우한다. 따라서 본 논문에서는 ART2 알고리즘에서 효율적으로 경계 변수를 설정하기 위해 패턴셋 설정을 통한 경계 변수 설정 방법을 제안한다. 제안된 경계 변수 설정 방법의 성능을 평가하기 위해 숫자 및 영문 패턴을 대상으로 실험한 결과, 패턴 분류의 성능이 기존의 방식 보다 개선된 것을 확인하였다.

  • PDF

레이저 센서를 이용한 물체의 형상인식 모듈 개발 (A Development of Object Shape Recognition Module using Laser Sensor)

  • 곽성환;이승규;이승재;오규현;김영식;최중경;박무훈
    • 한국정보통신학회논문지
    • /
    • 제12권11호
    • /
    • pp.1923-1932
    • /
    • 2008
  • 무인 운반설비의 자동화 시스템 개발의 한 부분으로써 여러 Vision 센서 중 레이저 센서를 이용하여 작업 공간상에 있는 판재류와 코일류의 경계부분을 인식한다. 다음으로 인식한 물체의 경계를 이용하여 3차원 공간상의 위치 좌표를 추출하여 무인크레인에 이동해야할 위치 좌표를 전달한다. 본 연구에서는, 첫 번째 레이저 센서를 이용한 물체의 경계 추출, 두 번째 레이저 센서의 z축 기울기 각 추출, 세 번째 인식한 경계를 이용하여 물체의 2차원 위치좌표 추출, 네 번째 레이저 센서를 이용하여 판재와 코일의 판별, 다섯 번째 물체 판별의 결과에 따른 판재 와 코일의 3차원 위치좌표 추출을 목적으로 한다. 본 연구의 결과는 무인 운반설비의 자동화 시스템 개발에 상당한 도움이 될 것으로 기대된다.

합성곱 신경망을 활용한 군사용 CCTV 객체 인식 (Object Recognition Using Convolutional Neural Network in military CCTV)

  • 안진우;김도형;김재오
    • 한국시뮬레이션학회논문지
    • /
    • 제31권2호
    • /
    • pp.11-20
    • /
    • 2022
  • 병력감축 등 국방 및 안보환경의 변화에 따라 육군의 경계시스템에도 변화가 시급한 상황이다. 또한 경계작전의 특성상 인간의 실수가 번번이 발생하고 있으며 이러한 실수가 전체 경계작전의 실패로 귀결되는 상황은 경계시스템의 인공지능 도입이 필요한 것에 대한 중요한 이유이다. 본 연구의 목적은 합성곱 신경망 방법을 활용하여 군사용 CCTV에 적합한 인공지능 영상인식 시스템을 개발하는 것이다. 본 연구에서 개발한 시스템의 주요 특징은 먼저, 군사용 CCTV의 특징상 상대적으로 작은 객체를 인식해야하는 상황에 적합한 학습데이터를 활용한 것이다. 둘째, 학습용 데이터 셋에 대해 데이터 증강 알고리즘을 활용하여 군사용에 보다 적합하도록 유도한 것이다. 셋째, 군사용 영상의 위장, 악천후 등 상황을 고려하여 영상의 잡음을 개선하는 알고리즘을 적용하였다. 본 연구에서 제안하는 시스템의 성능 평가결과 객체의 인식능력이 기존 방법에 비해 우수함을 확인하였다.

개선된 유사성 측정 방법과 동적인 경계 변수를 이용한 ART1 알고리즘 (ART1 Algorithm by Using Enhanced Similarity Test and Dynamical Vigilance Threshold)

  • 문정욱;김광백
    • 한국정보통신학회논문지
    • /
    • 제7권6호
    • /
    • pp.1318-1324
    • /
    • 2003
  • 기존의 ART1 알고리즘은 입력 패턴과 저장 패턴간의 유사성 검증 방법의 문제점과 경계 변수에 따라 클러스터의 수와 인식률이 좌우되는 문제점이 있다. 본 논문에서는 기존의 ART1 알고리즘을 개선하기 위하여 입력 패턴과 저장 패턴간의 Exclusive NOR의 놈 (norm) 비율을 사용하는 유사성 측정 방법과 퍼지 접속 연산자를 이용하여 유사성에 따라 경계변수를 동적으로 조정하는 방법을 적용한 개선된 ART1을 제안한다. 제안된 방법에서는 1의 개수 비율이 아니라 같은 값을 가진 노드의 비율을 사용하여 유사성을 측정하고 경계 변수는 Yager의 합 접속 연산자를 사용하여 동적으로 조정한다. 제안된 방법의 성능을 확인하기 위하여 26개의 영문 패턴 분류 문제와 잡음이 있는 패턴 인식 문제를 대상으로 실험한 결과, 제안된 방법이 기존의 ART1 알고리즘 보다 경계 변수의 설정에 따라 민감하게 반응하지 않았고 인식률에서도 개선된 것을 확인하였다.

차량 영상에서 Color 정보를 이용한 번호판 인식 (Recognition of Number Plate by using Color Information In Vehicle Image)

  • 박상윤;김윤동;권중장
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 1998년도 춘계종합학술대회
    • /
    • pp.193-198
    • /
    • 1998
  • 본 논문은 차량 영상에서 번호판을 인식하는 방법에 관하여 기술한다. 번호판이 가지는 수평 경계선을 Peak & Valley로 표현하고, 번호판의 Color 특성을 이용하여 번호판 영역을 추출한 뒤, 번호판 영역에서 히스토그램 기법을 이용하여 문자를 추출하고, Maximum Likely Hood에 의해 문자를 인식한다.

  • PDF

블랙박스 영상용 자동차 번호판 인식을 위한 최소 자승법 기반의 번호판 영상 이진화 알고리즘 (A License-Plate Image Binarization Algorithm Based on Least Squares Method for License-Plate Recognition of Automobile Black-Box Image)

  • 김진영;임종태;허서원
    • 한국정보통신학회논문지
    • /
    • 제22권5호
    • /
    • pp.747-753
    • /
    • 2018
  • 자동차 블랙박스 영상용 자동차 번호판 인식 시스템에서는 수시로 변하는 도로 주변의 외부 환경에 의해 자동차 번호판에 그림자가 존재하는 경우가 많이 발생한다. 이러한 그림자는 번호판의 문자와 숫자의 개별 문자 분할 과정에서 예상하지 않은 오류를 발생시키게 되고, 그 결과 전체적인 자동차 번호판 인식률을 저하시킨다. 본 논문에서는 이러한 환경에서 번호판 인식률을 높이고자, 번호판의 그림자를 효과적으로 제거하는 번호판 영상 이진화 알고리즘을 제안한다. 제안한 방법에서는 그림자의 경계를 기준으로 그림자가 드리운 영역과 드리우지 않은 영역으로 분할하는데, 그림자의 경계를 찾기 위해 최소 자승법을 사용하여 그림자 경계선에 대한 곡선을 추정한다. 그림자가 존재하는 자동차 번호판의 영상에 대해 시뮬레이션을 수행하였으며, 그 결과 기존 알고리즘 보다 훨씬 높은 인식률을 보임을 확인하였다.

균일분포 신경회로망을 이용한 얼굴인식 시스템 (School of Electronic and Electrical Engineering, Hong Ik University)

  • 조성원;박준하
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 춘계학술대회 학술발표 논문집
    • /
    • pp.171-175
    • /
    • 1997
  • 본 논문에서는 LVQ(Learning Vector Quentization) 신경회로망의 새로운 가중치 초기화법을 제안하고 이를 얼굴인식 시스템에 적용하였다. 제안한 방법은 초기가중치를 패턴 결정 경계면 주변에 설정함으로써 인식율을 높이는 방법이다. 얼굴인식의 특징 추출 방법으로서는 주성분 분석, 모멘트, 푸리에 기술자, 모멘트+주성분 분석 및 푸리에 기술자+주성분 분석 등을 사용하여 실험하였으며, 인식부의 LVQ 신경회로망에 제안된 방법을 적용하여 기존의 방법과 비교 실험하였다. 실험 결과 초기가중치를 최초 패턴으로 가지는 경우, 평균값을 취하는 경우, 랜덤하게 사용하는 경우 등에 비해서 우수한 인식율을 보임을 알 수 있었다.

  • PDF