• Title/Summary/Keyword: 인공 혈관

Search Result 391, Processing Time 0.025 seconds

Development of Artificial Vessels with Autologous Bone Marrow Cells and Polymers (자기 골수세포와 고분자 폴리머를 이용한 인공 혈관의 개발)

  • Choi, Jin-Wook;Lim, Sang-Hyun;Hong, You-Sun;Kim, Byung-Soo
    • Journal of Chest Surgery
    • /
    • v.41 no.2
    • /
    • pp.160-169
    • /
    • 2008
  • Bakcground: To treat anastomosis site stenosis and occlusion of the artificial vessels used in vascular surgery, tissue-engineered artificial vessels using autologous cells have been constructed. We developed artificial vessels using a polymer scaffold and autologous bone marrow cells and performed an in vivo evaluation. Material and Method: We manufactured a vascular scaffold using biodegradable PLCL (poly lactide-co-${\varepsilon}$-caprolactone) and PGA (poly glycolic acid) fibers. Then we seeded autologous bone marrow cells onto the scaffold. After implantation of the artificial vessel into the abdominal aorta, we performed an angiography 3 weeks after surgery. After the dogs were euthanized we retrieved the artificial vessels and performed histological analysis. Result: Among the six dogs, 2 dogs died of massive bleeding due to a crack in the vascular scaffold 10 days after the operation. The remaining four dogs lived for 3 weeks after the operation. In these dogs. the angiography revealed no stenosis or occlusion at 3 weeks after the operation. Gross examination revealed small thrombi on the inner surface of the vessels and the histological analysis showed three layers of vessel structure similar to the native vessel. Immunohistochemical analysis demonstrated regeneration of the endothelial and smooth muscle cell layers. Conclusion: A tissue engineered vascular graft was manufactured using a polymer scaffold and autologous bone marrow cells that had a structure similar to that of the native artery. Further research is needed to determine how to accommodate the aortic pressure.

In Vivo Experiment of Tissue-Engineered Artificial Vessel (조직공학적 인조혈관의 생체 내 이식 실험)

  • 임상현;조승우;홍유선;김병수;유경종;장병철;최차용
    • Journal of Chest Surgery
    • /
    • v.37 no.3
    • /
    • pp.220-227
    • /
    • 2004
  • The number of patients with coronary artery disease and peripheral vascular disease are increasing, and the need of small diameter vessel is also increasing. We developed small diameter artificial vessel and experimented in vivo. We got allogenic valve from mongrel dogs, and removed all cells from the allogenic valve. Then, we seeded autologous bone marrow cells onto the decellularized scaffold. After implantation of artificial vessel into the canine carotid artery, we performed angiography regularly. In case of vessel occlusion or at 8 weeks after operation, we euthanized dogs, and retrieved the implanted artificial vessels. Control vessels were all occluded except one (which developed aneurysmal dilatation). But autologous cell seeded vascular graft were patent by 4 weeks in one, by 6 in one and by 8 weeks in two. Histologic examination of patent vessel revealed similar structure to native artery. Tissue-engineered vascular graft manufactured with decellularized allogenic matrix and autologous bone marrow cells showed that tissue engineered graft had similar structure to native artery.

Arteriography and Embolization of Lateral Inferior Genicular Artery of Recurrent Spontaneous Hemarthrosis after Total Knee Arthroplasty (인공 슬관절 치환술 후 발생한 재발성 혈관절증의 치료를 위해 시행한 혈관조영술 및 하외슬동맥색전술)

  • Chon, Je-Gyun;Kang, Jong-Won;Yoon, Ja-Yeong;Jeong, Uitak
    • Journal of the Korean Orthopaedic Association
    • /
    • v.56 no.2
    • /
    • pp.173-177
    • /
    • 2021
  • Recurrent spontaneous hemarthrosis is a relatively rare complication of total knee arthroplasty. This paper reports a case of a patient treated with arterial embolization for recurrent spontaneous hemarthrosis even after undergoing arthroscopic surgery. The patient had several relapses after total knee arthroplasty.

Paclitaxel Coating on ePTFE Artificial Graft and the Release Behavior (ePTFE 인공혈관에 대한 파클리탁셀의 코팅 및 방출거동)

  • Lim, Soon-Yong;Kim, Cheol-Joo;Kim, Eun-Jin;Kwon, Oh-Kyoung;Kwon, Oh-Hyeong
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.326-331
    • /
    • 2012
  • In this study, expanded poly(tetrafluoro ethylene) (ePTFE) graft was modified to be used as a hemodialysis vascular access. Biodegradable poly(D,L-lactide-$co$-glycolide) (PLGA) was coated onto the inner surface of ePTFE graft with paclitaxel, which is often used as an anti-cancer agent and for reducing neointimal hyperplasia. Surface characterization before and after PLGA coating was carried out by SEM and ATR-FTIR. Porous sturcture of ePTFE was maintained after coating of PLGA solution. The amounts of coated PLGA and paclitaxel determined by ATR-FTIR and HPLC were 1.96 and 0.263 mg/$cm^2$, respectively. Young's modulus was decreased and tensile strength was increased by PLGA coating. Released paclitaxel as a function of incubation time was monitored by HPLC. Approximately 35% of coated paclitaxel was released steadily for 4 weeks with the biodegradation of PLGA. From these results, it is expected that the effect of paclitaxel on reducing neointimal hyperplasia and stenosis is maintained for a long time.