• Title/Summary/Keyword: 인공 지진파

Search Result 96, Processing Time 0.028 seconds

Generation of Artificial Acceleration-Time Histories for the Dynamic Analysis of Structures in the Korean Peninsula (구조물(構造物)의 동적해석(動的解析)을 위한 한반도(韓半島)의 인공지진파(人工地震波) 작성(作成))

  • Kim, Won Bae;Yu, Chul Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.39-47
    • /
    • 1990
  • The generation of artificial accelerograms considering the characteristic of earthquakes in the Korean peninsula for a time history analysis of structures is accomplised by the stochastic method. The engineering data such as a representative shape of envelope function and an effective duration are investigated from the instrumental records. The maximum ground acceleration value is based on seismic zoning map which are constructed for the Korean peninsula. The acceleration-time histories are generated for two different types of earthquake motions and two types of soil conditions. In the study, the maximum ground acceleration value of 0.2 g and effective durations of 24 seconds are used. The validity of the artificial accelerograms is obtained by the comparison with the required envelope functions and the design response spectrum.

  • PDF

Generation of Synthetic Ground Motion in Time Domain (시간영역 인공지진파 생성)

  • Kim, Hyun-Kwan;Park, Du-Hee;Jeong, Chang-Gyun
    • Land and Housing Review
    • /
    • v.1 no.1
    • /
    • pp.51-57
    • /
    • 2010
  • The importance of seismic design is greatly emphasized recently in Korea, resulting in an increase in the number of dynamic analysis being performed. One of the most important input parameters for the dynamic seismic analysis is input ground motion. However, it is common practice to use recorded motions from U.S. or Japan without considering the seismic environment of Korea or synthetic motions generated in the frequency domain. The recorded motions are not suitable for the seismic environment of Korea since the variation in the duration and energy with the earthquake magnitude cannot be considered. The artificial motions generated in frequency domain used to generated design response spectrum compatible ground motion has the problem of generating motions that have different frequency characteristics compared to real recordings. In this study, an algorithm that generates target response spectrum compatible ground motions in time domain is used to generate a suite of input ground motions. The generated motions are shown to preserve the non-stationary characteristics of the real ground motion and at the same, almost perfectly match the design response spectrum.

Incorporating Genetic Algorithms into the Generation of Artificial Accelerations (인공 지진파 작성을 위한 유전자 알고리즘의 적용)

  • Park, Hyung-Ghee;Chung, Hyun-Kyo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.1-9
    • /
    • 2007
  • The method of generating the artificial acceleration time histories for seismic analysis based on genetic algorithms is presented. For applying to the genetic algorithms, the frequencies are selected as the decision variables eventually to be genes. An arithmetic average crossover operator and an arithmetic ratio mutation operator are suggested in this study. These operators as well as the typical simple crossover operator are utilized in generating the artificial acceleration time histories corresponding to the specified design response spectrum. Also these generated artificial time histories are checked whether their outward features are to be coincident with the recorded earthquake motion or not. The features include envelope shape, correlation condition between 2 horizontal components of motion, and the relationship of max. acceleration, max. velocity and max. displacement of ground.

Generation of Artificial Time History Covering Design Response Spectrum by Two Modification Functions (이중 수정함수 적용을 통한 설계응답스펙트럼 포괄 인공지진파의 생성)

  • Park, Gun;Hong, Ki Nam;Han, Sang Hoon;Kim, Jae Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • The domestic and foreign seismic design codes have specified that time history covers design response spectrum when the response spectrum, which calculated from the time history, is smaller than the design response spectrum at five points or less. In order to verify the design codes, time history analysis for a pier was performed by using five artificial time histories conforming design code with various characteristics and its member forces were evaluated according to them. It was confirmed from analysis results that, regardless of the conformity to design code requirement, seismic design using the artificial time histories could not guarantee earthquake resistant design if the response spectrum from them is lower than design response spectrum at the similar period to the natural frequency of structure. Thus, the time history generating method to make its acceleration response spectrum to be greater than design response spectrum at all period was proposed by two modification function in this study. It was also verified whether time histories from the proposed method satisfy the seismic design codes or not.

Analysis of the Spectrum Intensity Scale for Inelastic Seismic Response Evaluation (비탄성 지진응답평가를 위한 Spectrum Intensity Scale 분석)

  • Park, Kyung-Rock;Jeon, Bub-Gyu;Kim, Nam-Sik;Seo, Ju-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.35-44
    • /
    • 2011
  • PGA (Peak Ground Acceleration) is the parameter which indicates the peak value for strong ground motion and is mainly due to the intensity of the seismic wave. Usually, seismic waves can consist of different characteristics and can have different effects on structures. Therefore, it may be undesirable that the effects of a seismic wave are evaluated only based on the PGA. In this study, time history analysis was executed with a single degree of freedom model for inelastic seismic analysis. The numerical model was assumed to be a perfect elasto-plastic model. Input accelerations were made with El Centro NS (1940), other earthquake records and artificial earthquakes. The displacement ductility demand and cumulative dissipated energy, which were calculated from other artificial earthquakes, were compared. As a result, different responses from other seismic waves which have the same PGA were identified. Therefore, an index which could reflect both seismic and structural characteristics is needed. The SI (Spectrum Intensity) scale which could be obtained from integration by parts of the velocity response spectrum could be an index reflecting the inelastic seismic response of structures. It can be possible to identify from correlation analysis among the SI scale, displacement ductility demand and cumulative dissipated energy that the SI scale is sufficient to be an index for the inelastic response of structures under seismic conditions.

Principal component analysis based frequency-time feature extraction for seismic wave classification (지진파 분류를 위한 주성분 기반 주파수-시간 특징 추출)

  • Min, Jeongki;Kim, Gwantea;Ku, Bonhwa;Lee, Jimin;Ahn, Jaekwang;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.6
    • /
    • pp.687-696
    • /
    • 2019
  • Conventional feature of seismic classification focuses on strong seismic classification, while it is not suitable for classifying micro-seismic waves. We propose a feature extraction method based on histogram and Principal Component Analysis (PCA) in frequency-time space suitable for classifying seismic waves including strong, micro, and artificial seismic waves, as well as noise classification. The proposed method essentially employs histogram and PCA based features by concatenating the frequency and time information for binary classification which consist strong-micro-artificial/noise and micro/noise and micro/artificial seismic waves. Based on the recent earthquake data from 2017 to 2018, effectiveness of the proposed feature extraction method is demonstrated by comparing it with existing methods.

Generation of RMS Hazard-Compatible Artificial Earthquake Ground Motions (RMS 가속도에 의한 인공 지진파 생성기법)

  • Kim, Jin-Man
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.31-40
    • /
    • 2003
  • Due to the random nature of earthquake, the definition of the input excitation is one of the major uncertainties in the seismic response analysis. Furthermore, ground motions that correspond to a limited number of design parameters are not unique. Consequently, a brood range of response values can be obtained even with a set of motions, which match the same target parameters. The paper presents a practical probabilistic approach that can be used to systematically model the stochastic nature of seismic loading. The new approach is based on energy-based RMS hazard and takes account for the uncertainties of key ground motion parameters. The simulations indicate that the new RMS procedure is particularly useful for the rigorous probabilistic seismic response analysis, since the procedure is suitable for generation of large number of hazard-compatible motions, unlike the conventional procedure that aim to generate a small number of motions.

Seismic Stability Evaluation of Sand Ground with Organic Soil by Using Shaking Table Test (진동대 시험을 이용한 유기질토가 협재된 모래지반의 내진 안정성 평가)

  • Yongjin Chung;Youngchul Baek;Donghyuk Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.5
    • /
    • pp.13-20
    • /
    • 2023
  • The Gangneung region has an environment suitable for the formation of organic soil, and there is an alluvial layer in which sedimentary sand layers are distributed on the upper and lower parts of the organic soil. In order to evaluate the seismic safety of the railway roadbed passing through the Gangneung area, a railway roadbed and ground model considering the similarity ratio was fabricated, a shaking table test was conducted, and the seismic stability was evaluated by comparing the effective stress analysis results. The applied seismic waves were artificial seismic waves, Gyeongju seismic waves, Borah seismic waves, Nahanni seismic waves, and Tabas seismic waves. It became. Due to the ground reinforcement effect by jet grouting applied to the lower ground of the new roadbed, the displacement of the new roadbed was found to be reduced from a minimum of 33.7% to a maximum of 56.7% compared to the existing roadbed. The shaking table test results were verified by effective stress analysis using the Finn model of the Flac program, and showed a similar trend to the shaking table test values.

Study on Physical Characteristics of Historical and Artificial Ground Acceleration (역사지진 및 인공지진의 물리적 특성에 관한 연구)

  • 이대형;정영수;전환석
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.35-44
    • /
    • 1998
  • Because of the continual occurrence of minor and moderate earthquakes in Korean peninsula, it is generally considered that Korean is not located in a safe region against probable earthquake any more, even though being recognized as a safe country in earthquake. It is in particular noted that nowadays there has been much concern about unexpected tragedy due to probable earthquake since the disaster of 1995 kobe earthquake. Thus, the objective of this research is to develop appropriate design spectrum which could be practicably used in seismic design of important structures taking into consideration of local physical characteristics. Particularly, we have to keep in mind the lessons from 1985 Mexico earthquake which had disregarded deep research on local ground conditions, being a possible magnification phenomena of ground motions in weak soil layer. Various spectra has been described based on the analysis of historical earthquakes, and generate the artificial ground acceleration. Also, rational numbers of artificial ground acceleration is investigated by the seismic analysis for skew slab bridges.

  • PDF

Experimental Study on the Seismic Behavior Simulation of Modular Expansion Joint (모듈러 신축이음장치 지진거동 모사 실험적 연구)

  • Lee, Jung-Woo;Choi, Eun-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.43-48
    • /
    • 2022
  • In order to evaluate the seismic performance of the modular expansion joint known for its large expansion allowance and remarkable durability, this study conducts seismic response analysis and seismic simulation test. The bridge selected for the seismic response analysis is a cable stayed bridge with main span length of 1,000m. Three artificial earthquake were generated with respect to the design response spectra of the Korean Standards (KS), AASHTO LRFD and Eurocode, and applied to the selected bridge. The seismic simulation tests reproduced the artificial earthquakes using dynamic hydraulic actuators in the longitudinal and transverse directions. The test results verified the durability and safety of the expansion joint in view of its seismic behavior since abnormal behavior or failure of the expansion joint was not observed when the artificial earthquake waves were applied in the longitudinal direction, transverse direction and both directions.