• 제목/요약/키워드: 인공지능 품질

검색결과 200건 처리시간 0.025초

인공지능 소프트웨어 평가방안 (Artificial Intelligence software evaluation plan)

  • 정혜정
    • 산업과 과학
    • /
    • 1권1호
    • /
    • pp.28-34
    • /
    • 2022
  • 소프트웨어 품질평가에 대해서는 많은 연구가 진행되어왔다. 최근에 인공지능 관련 소프트웨어들이 많이 개발되어지면서 기존 소프트웨어에 인공지능 기능을 평가하기 위한 방안에 대한 연구가 진행되어지고 있다. 소프트웨어 평가는 기능적합성(Functional suitability), 신뢰성(Reliability), 사용성(Usability), 유지보수성(Maintainability), 효율성(Performance efficiency), 이식성(Portability), 상호운영성(Compatibility), 보안성(Security)이란 8가지 품질 특성을 기반으로 평가 되어왔으나 인공지능 기능을 가지고 있는 소프트웨어의 경우는 8가지 품질 특성뿐만 아니라 인공지능 부분의 기능에 대해서 평가를 통해서 확인해야 하는 부분에 대한 연구가 진행되고 있다. 본 연구는 이 부분에서 평가 방안에 대한 내용을 소개하려 한다. 기존에 소프트웨어 품질 평가 방안과 인공지능 부분에서 고려해야 하는 부분에 대한 제시를 통해서 인공지능 소프트웨어의 품질 평가 방안을 제시하려 한다.

비정형데이터의 AI학습을 위한 영상/이미지 데이터 품질 향상 방법 (Method for improving video/image data quality for AI learning of unstructured data)

  • 김승희;류동주
    • 융합보안논문지
    • /
    • 제23권2호
    • /
    • pp.55-66
    • /
    • 2023
  • 최근 전세계적으로 사회 모든 분야에서 인공지능 학습용 데이터에 관한 선행연구를 기반으로, 인공지능 학습용 데이터의 가치를 높이고 고품질 데이터를 확보하고자 하는 움직임이 늘고 있다. 따라서, 고품질 데이터를 확보하기 위한 구축사업에서는 품질관리가 매우 중요하다. 이에, 본 논문에서는 인공지능 학습용 데이터를 구축할 시 고품질데이터 확보를 위한 품질관리와 그에 따른 구축공정별 개선방안을 제시하였다. 특히, 인공지능 학습을 위해 구축되는 비정형데이터는 데이터 품질의 80% 이상이 구축과정에서 결정된다. 본 논문에서는 비정형데이터 이미지/영상데이터에 대한 품질검사를 통해 구축단계에서의 획득, data cleaning, labeling 모델에서 발생된 검사절차 및 문제 요소를 해결함으로써 고품질 데이터 확보 방안을 제시하였으며, 제시한 방안을 토대로 인공지능 학습용 데이터 구축에 참여하는 연구단체와 사업자들에게 데이터의 품질편차를 극복하기 위한 대안이 될 것으로 기대된다.

인공지능이 적용된 온라인 구인정보 플랫폼의 품질 및 선호가 지속사용의도에 미치는 영향에 관한 탐색적 연구 (An Exploratory Study on Artificial Intelligence Quality, Preference and Continuous Usage Intention: A Case of Online Job Information Platform)

  • 안경민;이영찬
    • 디지털융복합연구
    • /
    • 제17권7호
    • /
    • pp.73-87
    • /
    • 2019
  • 본 연구는 최근 빠르게 확산되는 인공지능의 지속적인수용에 관하여 탐색하고자 온라인 구인정보 플랫폼에 적용된 인공지능의 품질을 정의하고 인공지능의 선호, 지속사용의도 간의 구조적인 관계를 규명하였다. 인공지능 사용자를 대상으로 설문조사를 시행하였고 184개를 회수하였다. 실증분석결과 인공지능의 품질과 선호가 만족에 긍정적인 영향을 미치며, 인공지능의 만족이 지속사용의도에 통계적으로 유의한 수준에서 긍정적인 영향을 미치는 것으로 나타났다. 그러나 예상과는 달리 인공지능의 품질은 지속사용의도에 유의한 영향을 미치지 않는 것으로 나타났다. 이와 같은 결과는 향후 인공지능 기술을 제품이나 서비스에 적용하는데 있어 이론적, 실무적인 차원의 유용한 가이드라인을 제시할 수 있을 것으로 기대한다.

인공지능 챗봇 서비스의 만족과 불만족에 관한 연구 (A Study on the Satisfaction and Dissatisfaction in AI Chatbot)

  • 양창규
    • 벤처창업연구
    • /
    • 제17권2호
    • /
    • pp.167-177
    • /
    • 2022
  • 본 연구는 인공지능 챗봇 서비스의 만족과 불만족에 영향을 미치는 요인을 파악하여 인공지능 챗봇을 활용하여 시장 점유율을 높이고자 하는 기업이 활용할 수 있는 시사점을 제시하고자, ICT서비스의 14개 선호요인을 KANO모델을 통해 분류한 후 어떠한 요인이 인공지능 챗봇의 재사용과 이탈에 미치는지 확인하였다. 연구결과에 따르면 (1) 인공지능 챗봇의 선호요인은 매력적 품질, 필수적 품질, 일원적 품질로 구분되고, (2) 인공지능 챗봇은 각 선호요인의 품질특성에 따라 이용자의 만족과 불만족을 모두 고려한 서비스 전략이 필요하며, (3) 인공지능 챗봇 이용자는 상호작용성을 필수적 품질로 인식하고, 서비스에 대해 불만족하는 경우 적극적인 의견 개진보다는 이탈을 선택한다는 점을 확인하였다. 이 연구결과는 인공지능 챗봇을 활용하여 시장 점유율을 높여가기 원하는 벤처기업은 인공지능 챗봇을 통한 고객과의 소통이 가장 중요하며, 서비스 개선을 위해 고객의 참여를 적극적으로 유도하여야만 한다는 점을 시사한다.

효율적인 게임 품질 보증을 위한 인공지능 기술 적용에 관한 연구 (A Study on the Application of Artificial Intelligence Technology for Efficient Game Quality Assurance)

  • 김효남
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
    • /
    • pp.145-147
    • /
    • 2023
  • 요즘은 모든 산업에서 인공지능(Artificial Intelligence : AI) 채택을 빠르게 진행하고 있으며, 디지털 기술과 산업 기술이 융합된 인공지능 분야가 강화되고 여러 서비스 사업 혁신이 이루어지면서 여러 산업의 시장 성장을 견인하는 것으로 나타났다. 특히 게임 산업과 관련한 게임업계에서는 인공지능 관련 전문 지식을 확보하기 위한 투자가 활발하게 이어짐에 따라 발전과 경쟁력 확보를 위한 움직임들이 지속될 것으로 전망된다. 본 논문에서는 게임개발 기술에 인공지능(AI) 기술 접목이 집중되고 있는 상황에서 개발하고 있는 게임에 대한 품질을 보증하고 관리하기 위한 AI 기반의 게임 QA(Quality Assurance) 기술 적용을 위한 방법들에 대해서 제시하고자 한다.

  • PDF

인공지능 학습데이터 라벨링 정확도에 따른 인공지능 성능 (AI Performance Based On Learning-Data Labeling Accuracy)

  • 이지훈;신지은
    • 산업융합연구
    • /
    • 제22권1호
    • /
    • pp.177-183
    • /
    • 2024
  • 본 연구는 데이터의 품질이 인공지능(AI) 성능에 미치는 영향을 검토한다. 이를 위해, 데이터 특성변수(Feature)의 유사도와 클래스(Class) 구성의 불균형을 고려한 모의실험(Simulation)을 통해 라벨링 오류 수준이 인공지능의 성능에 미치는 영향을 비교 분석하였다. 그 결과, 특성변수 간 유사성이 높은 데이터에서는 특성 변수 간 유사성이 낮은 데이터에 비해 라벨링 정확도에 더 민감하게 반응하였으며, 클래스 불균형이 증가함에 따라 인공지능 정확도가 급격히 감소되는 경향을 관찰하였다. 이는 인공지능 학습데이터의 품질평가 기준 및 관련 연구를 위한 기초자료가 될 것이다.

인공지능 기술과 산업공정 제어

  • 김명원;황승구
    • 전기의세계
    • /
    • 제37권4호
    • /
    • pp.47-57
    • /
    • 1988
  • 본 고는 인공지능 기술이 특히 산업 공정 제어 분야에 응용되는 것에 대하여 기술한다. 그 내용은 크게 두 부분으로 나뉘어져 있으며, 처음 부분은 인공지능에 대하여 개괄적으로 기술하고 특히 산업 공정 제어 분야와 관련되는 인공지능의 기술에 대하여 설명한다. 다음 부분은 산업 공정 제어라는 응용분야의 특수적 상황을 설명하고 인공지능 기술이 실제로 어떻게 이 특수적 상황에 응용될 수 있는가에 대하여 기술한다. 단 여기서는 인공지능이 생산성 및 품질의 향상을 위하여 산업 공정 제어분야에 어떻게 응용되는가에 대하여 간략히 소개하며, 결코 기술적으로 상세한 내용을 기술하는 의도가 아님을 밝혀두고자 한다.

  • PDF

DSP320C6713기반의 인공지능형 단상전력품질 진단기 개발연구 (Development of DSP Process-based Artificial-Intelligent Power Quality Equipment for Single-phase Power System)

  • 곽선근;정교범;최재호
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 하계학술대회 논문집
    • /
    • pp.66-68
    • /
    • 2008
  • 본 논문은, 전력계통 내의 순시 파형으로부터 전력품질 자동진단을 위한 인공지능형 단상전력품질 진단기를 제안한다. 진단하는 전력품질은 전압강하(Sag), 전압상승(Swell), 과도현상(Transient) 및 전고조파함유율(THD) 이다. 인공지능 구현을 위해서 인공신경망 이론을 이용하였으며, 시뮬레이션 및 TI DSP 320C6713 사용하여 하드웨어를 구현하였다. 인공신경망의 학습을 위하여, 00변전소에서 일년(2007년)동안 측정한 데이터 중에서 Sag, Swell, Transient 특성이 명확히 관측된 150주기의 파형과 정상상태의 50주기 파형으로 구성된 총 200주기의 데이터를 사용하였다. 측정된 파형을 1/60[sec.]마다 256번 샘플링하여, FFT 및 웨이블렛 변환을 시행하여 얻어진 값을 인공신경망 학습에 사용하였다. 상용프로그램 PSIM을 이용하여 인공신경망 학습을 시뮬레이션하였으며, DSP 프로세서를 이용하여 하드웨어로 구현하여 검증하였다.

  • PDF

인공지능 학습용 데이터 품질에 대한 연구: 퍼지셋 질적비교분석 (A Study on the Artificial Intelligence (AI) Training Data Quality: Fuzzy-set Qualitative Comparative Analysis (fsQCA) Approach)

  • 오현목;이서연;장영훈
    • 경영정보학연구
    • /
    • 제26권1호
    • /
    • pp.19-56
    • /
    • 2024
  • 본 연구는 한국의 인공지능 학습용 데이터 구축 사업과 데이터의 공공 개방에 관한 정책 수행 기관, 데이터 구축 기업, 그리고 이를 활용하는 다양한 기관의 데이터 품질에 대해 이해를 제고하고, 신뢰할 수 있는 인공지능 알고리즘 개발에 있어 가장 중요한 학습용 데이터 품질에 대한 이론적 토대를 만들기 위한 실증적 연구이다. 이를 위해, 데이터의 속성 요인, 데이터 구축환경 요인, 데이터 타입 관련 요인 등 인공지능 학습용 데이터 품질과 관련된 중요 선행요인을 도입하여 이론적 모형을 제안한다. 본 연구는 393명의 인공지능 학습용 데이터 구축 기업과 인공지능 서비스 개발 기업의 실무 담당자를 대상으로 설문조사를 실시하여 데이터를 수집하였다. 데이터 분석은 퍼지셋 질적비교분석 방법과 인공신경망 분석을 통해 이루어졌으며, 분석 결과를 통해 인공지능 학습용 데이터 관련 학술적 및 실무적 시사점을 도출했다.

첨단기술 어디까지 왔나 - 산업기계분야에서 인공지능기술의 개발동향(1)

  • 문인혁
    • 발명특허
    • /
    • 제16권10호통권188호
    • /
    • pp.52-57
    • /
    • 1991
  • 인간이 지닌 지적인 능력을 규명하여 컴퓨터로 하여금 지능이 필요로 하는 일을 수행할 수 있도록 하는 인공지능(Artificial Intelligence, 이하 AI)기술에 관한 관심이 높아지고 있는 가운데 선진각국에서는 철강, 자동차, 산업기계 등 다양한 분야에서 제품의 라이프 사이클 단축, 다품종 소량 생산, 효율적인 조업, 고도의 품질제어 요구에 유연하게 대처하기 위하여 인공지능 개발 프로젝트를 활발히 진행중이다. 본고에서는 산업기계분야에서 인공지능 개발에 필요한 기반환경에 대하여 살펴보고 선진국의 주요 개발동향 및 우리나라의 개발실태를 살표보고자 한다.

  • PDF