• Title/Summary/Keyword: 인공지능 위험

Search Result 242, Processing Time 0.025 seconds

A Study on the Model for Preemptive Intrusion Response in the era of the Fourth Industrial Revolution (4차 산업혁명 시대의 선제적 위협 대응 모델 연구)

  • Hyang-Chang Choi
    • Convergence Security Journal
    • /
    • v.22 no.2
    • /
    • pp.27-42
    • /
    • 2022
  • In the era of the Fourth Industrial Revolution, digital transformation to increase the effectiveness of industry is becoming more important to achieving the goal of industrial innovation. The digital new deal and smart defense are required for digital transformation and utilize artificial intelligence, big data analysis technology, and the Internet of Things. These changes can innovate the industrial fields of national defense, society, and health with new intelligent services by continuously expanding cyberspace. As a result, work productivity, efficiency, convenience, and industrial safety will be strengthened. However, the threat of cyber-attack will also continue to increase due to expansion of the new domain of digital transformation. This paper presents the risk scenarios of cyber-attack threats in the Fourth Industrial Revolution. Further, we propose a preemptive intrusion response model to bolster the complex security environment of the future, which is one of the fundamental alternatives to solving problems relating to cyber-attack. The proposed model can be used as prior research on cyber security strategy and technology development for preemptive response to cyber threats in the future society.

Study of IoT Service Strategy for Prevent Disasters (재난재해 감소를 위한 사물인터넷 서비스)

  • Yoon, YoungDoo;Choi, Hun
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.11
    • /
    • pp.102-109
    • /
    • 2017
  • The Nation's Constitution stipulates that the nation should strive to prevent disasters and protect the public from harm. That is, the nation is a protector of the protection of people's lives and property from potential danger. The disasters are the most important global issues, and disasters scope are not confined to natural disasters such as pre-existing earthquakes, landslides, floods, fires and fires extend to cyber terror and disease. In the age of IoT and ability of analyze big data, the establishment of a disaster prevention service system in modern society is a priority for the nation. In this study, we will explore the disaster prevention services for each country using IoT technology. Based on the research, it is believed that it will be the foundation for establishing strategies for service system of disasters using IoT technology.

A Qualitative Formal Method for Requirements Specification and Safety Analysis of Hybrid Real-Time Systems (복합 실시간 계통의 요구사항 명세와 안전성 분석을 위한 정성적 정형기법)

  • Lee, Jang-Soo;Cha, Sung-Deok
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.2
    • /
    • pp.120-133
    • /
    • 2000
  • Major obstruction of using formal methods for hybrid real-time systems in industry is the difficulty that engineers have in understanding and applying the quantitative methods in an abstract requirements phase. While formal methods technology in safety-critical systems can help increase confidence of software, difficulty and complexity in using them can cause another hazard. In order to overcome this obstruction, we propose a framework for qualitative requirements engineering of the hybrid real-time systems. It consists of a qualitative method for requirements specification, called QFM (Qualitative Formal Method), and a safety analysis method for the requirements based on a causality information, called CRSA (Causal Requirements Safety Analysis). QFM emphasizes the idea of a causal and qualitative reasoning in formal methods to reduce the cognitive burden of designers when specifying and validating the software requirements of hybrid safety systems. CRSA can evaluate the logical contribution of the software elements to the physical hazard of systems by utilizing the causality information that is kept during specification by QFM. Using the Shutdown System 2 of Wolsong nuclear power plants as a realistic example, we demonstrate the effectiveness of our approach.

  • PDF

Development of Personal Mobility Safety Driving Assistance System Using CNN-Based Object Detection and Boarding Detection Sensor (합성곱 신경망 기반 물체 인식과 탑승 감지 센서를 이용한 개인형 이동수단 주행 안전 보조 시스템 개발)

  • Son, Kwon Joong;Bae, Sung Hoon;Lee, Hyun June
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.10
    • /
    • pp.211-218
    • /
    • 2021
  • A recent spread of personal mobility devices such as electric kickboards has brought about a rapid increase in accident cases. Such vehicles are susceptible to falling accidents due to their low dynamic stability and lack of outer protection chassis. This paper presents the development of an automatic emergency braking system and a safe starting system as driving assistance devices for electric kickboards. The braking system employed artificial intelligence to detect nearby threaening objects. The starting system was developed to disable powder to the motor until when the driver's boarding is confirmed. This study is meaningful in that it proposes the convergence technology of advanced driver assistance systems specialized for personal mobility devices.

Effects of Agent Interaction on Driver Experience in a Semi-autonomous Driving Experience Context - With a Focus on the Effect of Self-Efficacy and Agent Embodiment - (부분자율주행 체험환경에서 에이전트 인터랙션 방식이 운전자 경험에 미치는 영향 - 자기효능감과 에이전트 체화 효과를 중심으로 -)

  • Lee, Jeongmyeong;Joo, Hyehwa;Choi, Junho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.361-369
    • /
    • 2019
  • With the commercialization of the ADAS functions, the need for the experience of the autonomous driving system is increasing, and the role of the artificial intelligence agent is attracting attention. This study is an autonomous driving experience experiment that verifies the effect of self-efficacy and agent embodiment. Through a simulator experiment, we measured the effect of existence of self-efficacy and agent embodiment on social presence, perceived risk, and perceived ease of use. Results show that self-efficacy had a positive effect on social presence and perceived risk, and agent embodiment negatively affected perceived ease of use. Based on the results of the study, we proposed guidelines for agent design that can increase the acceptance of the semi-autonomous driving system.

IoT industrial site safety management system incorporating AI (AI를 접목한 IoT 기반 산업현장 안전관리 시스템)

  • Lee, Seul;Jo, So-Young;Yeo, Seung-Yeon;Lee, Hee-Soo;Kim, Sung-Wook
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.118-121
    • /
    • 2022
  • 국내 산업재해 사고 사망자의 상당수가 건설업에서 발생하고 있다. 건설 현장에는 굴삭기, 크레인과 같은 중장비가 많고 높은 곳에서 작업하는 경우가 흔해 위험 요소에 노출될 가능성이 높다. 물리적 사고 외에도 작업 중 발생하는 미세먼지에는 여러 유해 인자가 존재하여 건설근로자들에게 호흡기질환과 같은 직업병을 유발한다. 정부에서는 산업현장 안전 관리의 중요성이 증가함에 따라 각종 산업재해로부터 근로자를 보호하기 위한 법안을 마련하였다. 따라서 건설 현장의 경우 산업재해를 방지하기 위해서 위험요소를 사전에 인지하고 즉각 대응할 수 있는 기술이 필요하다. 본 연구에서는 인공지능(AI)과 사물인터넷(IoT)을 통한 자동화 기술을 활용하여 24시간 안전 관리 시스템을 제안한다. 제안하는 IoT 기반 통합안전 관리 시스템은 AI를 적용한 CCTV를 통해 산업 현장을 모니터링하고, 다수의 IoT 센서가 측정한 수치를 근로자 및 관리자가 실시간으로 확인할 수 있게 하여 산업 현장 내 안전사고를 예방한다. 구체적으로 어플리케이션을 통해 미세먼지 농도, 가스 농도, 온도, 습도, 안전모 착용 여부 등을 모니터링할 수 있다. 모니터링 중에 유해물질의 농도가 일정 수치를 넘기거나 안전모를 착용하지 않은 근로자가 발견될 경우 근로자 및 관리자에게 경고 알림을 발송한다. 유해물질 농도는 IoT 센서를 통해 측정하며 안전모 착용 여부는 카메라 센서에 딥러닝 모델을 적용하여 인식하였다. 본 연구에서 제시한 통합안전관리시스템을 통해 건설현장을 비롯한 산업현장의 산업재해 감소와 근로자 안전 증진에 기여할 수 있을 것으로 기대한다.

Development of an Ensemble Prediction Model for Lateral Deformation of Retaining Wall Under Construction (시공 중 흙막이 벽체 수평변위 예측을 위한 앙상블 모델 개발)

  • Seo, Seunghwan;Chung, Moonkyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.4
    • /
    • pp.5-17
    • /
    • 2023
  • The advancement in large-scale underground excavation in urban areas necessitates monitoring and predicting technologies that can pre-emptively mitigate risk factors at construction sites. Traditionally, two methods predict the deformation of retaining walls induced by excavation: empirical and numerical analysis. Recent progress in artificial intelligence technology has led to the development of a predictive model using machine learning techniques. This study developed a model for predicting the deformation of a retaining wall under construction using a boosting-based algorithm and an ensemble model with outstanding predictive power and efficiency. A database was established using the data from the design-construction-maintenance process of the underground retaining wall project in a manifold manner. Based on these data, a learning model was created, and the performance was evaluated. The boosting and ensemble models demonstrated that wall deformation could be accurately predicted. In addition, it was confirmed that prediction results with the characteristics of the actual construction process can be presented using data collected from ground measurements. The predictive model developed in this study is expected to be used to evaluate and monitor the stability of retaining walls under construction.

A Study on the Development of an Automatic Classification System for Life Safety Prevention Service Reporting Images through the Development of AI Learning Model and AI Model Serving Server (AI 학습모델 및 AI모델 서빙 서버 개발을 통한 생활안전 예방 서비스 신고 이미지 자동분류 시스템 개발에 대한 연구)

  • Young Sic Jeong;Yong-Woon Kim;Jeongil Yim
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.2
    • /
    • pp.432-438
    • /
    • 2023
  • Purpose: The purpose of this study is to enable users to conveniently report risks by automatically classifying risk categories in real time using AI for images reported in the life safety prevention service app. Method: Through a system consisting of a life safety prevention service platform, life safety prevention service app, AI model serving server and sftp server interconnected through the Internet, the reported life safety images are automatically classified in real time, and the AI model used at this time An AI learning algorithm for generation was also developed. Result: Images can be automatically classified by AI processing in real time, making it easier for reporters to report matters related to life safety.Conclusion: The AI image automatic classification system presented in this paper automatically classifies reported images in real time with a classification accuracy of over 90%, enabling reporters to easily report images related to life safety. It is necessary to develop faster and more accurate AI models and improve system processing capacity.

A Study of Life Safety Index Model based on AHP and Utilization of Service (AHP 기반의 생활안전지수 모델 및 서비스 활용방안 연구)

  • Oh, Hye-Su;Lee, Dong-Hoon;Jeong, Jong-Woon;Jang, Jae-Min;Yang, Sang-Woon
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.864-881
    • /
    • 2021
  • Purpose: This study aims is to provide a total care solution preventing disaster based on Big Data and AI technology and to service safety considered by individual situations and various risk characteristics. The purpose is to suggest a method that customized comprehensive index services to prevent and respond to safety accidents for calculating the living safety index that quantitatively represent individual safety levels in relation to daily life safety. Method: In this study, we use method of mixing AHP(Analysis Hierarchy Process) and Likert Scale that extracted from consensus formation model of the expert group. We organize evaluation items that can evaluate life safety prevention services into risk indicators, vulnerability indicators, and prevention indicators. And We made up AHP hierarchical structure according to the AHP decision methodology and proposed a method to calculate relative weights between evaluation criteria through pairwise comparison of each level item. In addition, in consideration of the expansion of life safety prevention services in the future, the Likert scale is used instead of the AHP pair comparison and the weights between individual services are calculated. Result: We obtain result that is weights for life safety prevention services and reflected them in the individual risk index calculated through the artificial intelligence prediction model of life safety prevention services, so the comprehensive index was calculated. Conclusion: In order to apply the implemented model, a test environment consisting of a life safety prevention service app and platform was built, and the efficacy of the function was evaluated based on the user scenario. Through this, the life safety index presented in this study was confirmed to support the golden time for diagnosis, response and prevention of safety risks by comprehensively indication the user's current safety level.

Case study on flood water level prediction accuracy of LSTM model according to condition of reference hydrological station combination (참조 수문관측소 구성 조건에 따른 LSTM 모형 홍수위예측 정확도 검토 사례 연구)

  • Lee, Seungho;Kim, Sooyoung;Jung, Jaewon;Yoon, Kwang Seok
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.981-992
    • /
    • 2023
  • Due to recent global climate change, the scale of flood damage is increasing as rainfall is concentrated and its intensity increases. Rain on a scale that has not been observed in the past may fall, and long-term rainy seasons that have not been recorded may occur. These damages are also concentrated in ASEAN countries, and many people in ASEAN countries are affected, along with frequent occurrences of flooding due to typhoons and torrential rains. In particular, the Bandung region which is located in the Upper Chitarum River basin in Indonesia has topographical characteristics in the form of a basin, making it very vulnerable to flooding. Accordingly, through the Official Development Assistance (ODA), a flood forecasting and warning system was established for the Upper Citarium River basin in 2017 and is currently in operation. Nevertheless, the Upper Citarium River basin is still exposed to the risk of human and property damage in the event of a flood, so efforts to reduce damage through fast and accurate flood forecasting are continuously needed. Therefore, in this study an artificial intelligence-based river flood water level forecasting model for Dayeu Kolot as a target station was developed by using 10-minute hydrological data from 4 rainfall stations and 1 water level station. Using 10-minute hydrological observation data from 6 stations from January 2017 to January 2021, learning, verification, and testing were performed for lead time such as 0.5, 1, 2, 3, 4, 5 and 6 hour and LSTM was applied as an artificial intelligence algorithm. As a result of the study, good results were shown in model fit and error for all lead times, and as a result of reviewing the prediction accuracy according to the learning dataset conditions, it is expected to be used to build an efficient artificial intelligence-based model as it secures prediction accuracy similar to that of using all observation stations even when there are few reference stations.