• Title/Summary/Keyword: 인공지능 영상인식

검색결과 180건 처리시간 0.035초

영상 인식을 이용한 웹 환경에서의 학사 관리 시스템 (An Educational Matters Administration System on The Web by Using Image Recognition)

  • 김태경;허정환;윤형근;노영욱;김광백
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2002년도 춘계학술대회 논문집
    • /
    • pp.203-209
    • /
    • 2002
  • 본 논문에서는 영상 처리 및 인식 기술을 학생증 영상 인식에 적용하여 학생증 영상을 인식하고 웹 환경에서 학생 정보를 관리할 수 있는 방법을 제안한다. 원 학생증 영상에 대해서 가장 밝은 픽셀과 가장 어두운 픽셀에 대한 평균 밝기 값을 임계치로 설정하여 원 영상을 이진화하여 수평 방향으로 히스토그램을 수행하고 학번의 위치 정보를 이용하여 학번 영 역을 추출한다. 추출된 학번 영 역의 잡음을 제거하기 위하여 3$\times$3 마스크를 적용한 최빈수 평활화(smothing)를 수행하여 잡음을 제거하고 수직 방향 히스토그램을 이용하여 개별 문자를 추출하고 정규화 한다. 개별 학번 인식은 인공 신경망의 자율학습 방법인 ARTI 알고리즘을 적용하여 학번 문자를 인식한다. 실험 결과에서는 제안된 학생증 인식 방법이 학번 영역 추출과 개별 문자 인식에 효율적인 것을 보이고 인식된 개련 문자들을 데이터 베이스에 저장하여 웹환경에서 학생정보를 관리한다

  • PDF

Design of Artificial Intelligence Course for Humanities and Social Sciences Majors

  • KyungHee Lee
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권4호
    • /
    • pp.187-195
    • /
    • 2023
  • 본 연구는 엔트리 인공지능 모델을 활용하여 인문사회계열 대학생을 위한 인공지능 교양 교과목을 개발하는 데 목적이 있다. 컴퓨터, 인공지능, 교육학 전문가 집단을 구성하고 선행연구 분석, 델파이 기법을 활용하여 최종 인공지능 교양 교과목을 개발하였다. 연구결과 교육 주제는 크게 이미지 분류, 영상인식, 텍스트 분류, 소리 분류 총 4가지로 구성하였다. 교육 내용은 주제별로 1) 인공지능 원리 이해, 2) 엔트리 인공지능 모델 활용 실습, 3) 윤리적 영향성 확인, 4) 배운 내용을 기반으로 실생활 문제 해결을 위한 팀별 아이디어 회의 단계로 구성하였다. 본 교과목을 통해 인문사회계열 대학생은 인공지능 핵심기술의 원리 이해를 바탕으로 엔트리 인공지능 모델을 통해 직접 구현할 수 있고 더 나아가 실생활의 다양한 문제를 인공지능으로 해결해보는 경험을 기저로 기술을 이해하고 인공지능 시대 필요한 윤리를 모색해보며 책임감 있게 사용하는데 긍적적인 기여를 기대해볼 수 있을 것이다.

딥러닝 알고리즘을 활용한 출입자 통계와 마스크 착용 판별 인공지능 시스템 (Development of AI Systems for Counting Visitors and Check of Wearing Masks Using Deep Learning Algorithms)

  • 조원영;박승렬;김현수;윤태진
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2020년도 제62차 하계학술대회논문집 28권2호
    • /
    • pp.285-286
    • /
    • 2020
  • 전 세계적으로 유행하는 COVID-19(코로나19)로 인해 사람들은 대면 접촉을 피하게 되었고, 전염성이 높은 이유로 마스크의 착용이 의무화되고 있고, 이를 검사하는 업무가 증가하고 있다. 그래서, 인공지능 기술을 통해 업무를 도와줄 수 있는 출입자 통계와 출입자 마스크 착용 검사를 할 수 있는 시스템이 필요하다. 이를 위해 본 논문에서는 딥러닝 알고리즘을 활용한 출입자 통계와 마스크 착용 판별 시스템을 제시한다. 또한, 실시간 영상인식에 많이 활용되고 있는 YOLO-v3와 YOLO-v4, YOLO-Tiny 알고리즘을 데스크탑 PC와 Nvidia사의 Jetson Nano에 적용하여 알고리즘별 성능 비교를 통해 적합한 방법을 찾고 적용하였다.

  • PDF

인공지능을 적용한 스쿨존의 LIDAR 시스템 개선 연구 (The Improvement of the LIDAR System of the School Zone Applying Artificial Intelligence)

  • 박문수;박대우
    • 한국정보통신학회논문지
    • /
    • 제26권8호
    • /
    • pp.1248-1254
    • /
    • 2022
  • 스쿨존에서 교통사고를 사전에 예방하려고 노력하고 있다. 하지만, 스쿨존 내 교통사고는 계속 발생하고 있다. 운전자가 어린이보호구역 내 상황 정보를 미리 알 수 있으면, 사고를 줄일 수 있다. 본 논문에서는 스쿨존 내 사각지대를 없애는 카메라, 사전 교통정보를 수집할 수 있는 번호인식 카메라 시스템을 설계한다. 차량속도 및 보행자를 인식하는 LIDAR 시스템을 개선하여 설계한다. 카메라 및 LIDAR에서 인식된 보행자 및 차량 영상 정보를 수집하고 가공하여, 인공지능 시계열 분석 및 인공지능 알고리즘을 적용한다. 본 논문에서 제안한 딥러닝으로 학습된 인공지능 교통사고 예방 시스템은, 스쿨존 진입 전 차량 내 모바일 장치에 스쿨존의 정보를 운전자에게 전달하는 강제 푸시서비스를 한다. 그리고 LED 안내판에 스쿨존 교통정보를 알람으로 제공한다.

실외 청소 로봇를 위한 인공지능기반 자율 주행 시스템 개발에 관한 연구 (Development of AI based Autonomous Driving System for Outdoor Cleaning Robot)

  • 고국원;이지연
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.526-528
    • /
    • 2022
  • 실외 자율주행 청소 로봇을 위한 인공지능기반 자율주행 시스템을 개발하였다. 개발된 시스템은 ROS(Robot Operationg System) 기반으로 이루어졌으며, 3D 라이다와, 초음파 센서를 활용하여 주변의 장애물을 감지하고 GPS와 영상을 활용하여 로봇의 위치 인식을 하여 자율 주행을 진행하였다. 자율주행 실험결과 영상과 RTK-GPS를 사용하여 정해진 경로를 ±20cm이내의 오차를 가지고 추종하면서 청소를 진행하였다.

인공지능 영상인식 기반 외단열 공법 품질감리 자동화 기술 기초연구 - 단열재 습식 부착방법을 중심으로 - (Preliminary Study for Vision A.I-based Automated Quality Supervision Technique of Exterior Insulation and Finishing System - Focusing on Form Bonding Method -)

  • 윤세빈;이병민;이창수;김태훈
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 봄 학술논문 발표대회
    • /
    • pp.133-134
    • /
    • 2022
  • This study proposed vision artificial intelligence-based automated supervision technology for external insulation and finishing system, and basic research was conducted for it. The automated supervision technology proposed in this study consists of the object detection model (YOLOv5) and the part that derives necessary information based on the object detection result and then determines whether the external insulation-related adhesion regulations are complied with. As a result of a test, the judgement accuracy of the proposed model showed about 70%. The results of this study are expected to contribute to securing the external insulation quality and further contributing to the realization of energy-saving eco-friendly buildings. As further research, it is necessary to develop a technology that can improve the accuracy of the object detection model by supplementing the number of data for model training and determine additional related regulations such as the adhesive area ratio.

  • PDF

외상 환자의 흉부 CT에서 인공지능을 이용한 갈비뼈 골절 진단 (Diagnosis of Rib Fracture Using Artificial Intelligence on Chest CT Images of Patients with Chest Trauma)

  • ;;고석범;진공용
    • 대한영상의학회지
    • /
    • 제85권4호
    • /
    • pp.769-779
    • /
    • 2024
  • 목적 외상 환자 흉부 CT에서 급성 갈비뼈 골절을 진단하기 위해 개발된 인공지능의 장단점에 대해서 알아보고자 하였다. 대상과 방법 외상으로 응급실에 내원했던 환자들 중 급성 갈비뼈 골절(n = 1159) 또는 정상(n = 50)으로 진단된 1209명의 흉부 CT를 무작위로 선택하였다. 이 중 9명의 급성 갈비뼈 골절 흉부 CT로 인공지능 모델 개발과 훈련을 했으며, 150명의 갈비뼈 골절 흉부 CT와 50명의 정상 흉부 CT로 테스트를 하였고, 나머지 1000명의 급성 갈비뼈 골절 흉부 CT로 내부 검증을 하였다. 급성 갈비뼈 골절에 대한 인공지능 모델의 골절의 유무와 위치에 대한 진단적 정확성과 오류에 대해서 알아보았다. 결과 개발된 인공지능 모델을 테스트 결과 급성 갈비뼈 골절 유무에 대한 민감도, 특이도, 양성예측도, 음성예측도, 정확도는 각각 93.3%, 94%, 97.9%, 82.5%, 95.6%였다. 내부 검증을 했을 때 급성 갈비뼈 골절 유무에 대한 정확도는 96%로 상승되었다. 그러나 급성 갈비뼈 골절 위치의 정확도는 76% (760/1000)로 낮았으며, 그 원인으로는 같은 위치에 있는 견갑골이나 쇄골을 갈비뼈로 잘못 인식(66%) 하거나 일부 갈비뼈를 인식하지 못하는 경우(34%)가 많았다. 결론 급성 갈비뼈 골절 진단을 위한 인공지능 모델이 급성 갈비뼈 골절의 유무 진단에는 높은 정확도를 보였지만 갈비뼈 골절의 정확한 위치를 진단하는 데는 제한점이 있었다.

유사물체 치환증강을 통한 기동장비 물체 인식 성능 향상 (Object Detection Accuracy Improvements of Mobility Equipments through Substitution Augmentation of Similar Objects)

  • 허지성;박지훈
    • 한국군사과학기술학회지
    • /
    • 제25권3호
    • /
    • pp.300-310
    • /
    • 2022
  • A vast amount of labeled data is required for deep neural network training. A typical strategy to improve the performance of a neural network given a training data set is to use data augmentation technique. The goal of this work is to offer a novel image augmentation method for improving object detection accuracy. An object in an image is removed, and a similar object from the training data set is placed in its area. An in-painting algorithm fills the space that is eliminated but not filled by a similar object. Our technique shows at most 2.32 percent improvements on mAP in our testing on a military vehicle dataset using the YOLOv4 object detector.

행동 인식을 위한 스켈레톤 데이터셋에 비밀 메시지를 은닉하기 위한 스테가노그라피 연구 (A Study on Steganography to Hide Secret Messages in Skeleton Datasets for Action Recognition)

  • 성락빈;이대원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 춘계학술발표대회
    • /
    • pp.157-160
    • /
    • 2022
  • 딥러닝이 각광받기 시작하면서 인간의 자세와 행동을 인식하고 분류하기 위한 인공지능 기술 또한 급속도로 발전하게 되었다. 영상에서 인간의 자세를 디지털 데이터로 표현할 때 인체의 주요 관절점의 위치와 연결관계를 나타내는 스켈레톤 표현 방식을 주로 사용한다. 본 논문에서는 스켈레톤 데이터에 비밀 메시지를 은닉할 수 있는 스테가노그라피 알고리즘에 대해 소개하고, 스켈레톤을 구성하는 주요 관절점 키포인트를 조작했을 때 행동 인식 인공지능 모델이 어떻게 반응하는지 살펴봄으로써 스켈레톤 데이터에 대한 스테가노그라피 알고리즘의 특성과 보안성에 대해 논의한다.