• Title/Summary/Keyword: 인공지능 교육과정

Search Result 274, Processing Time 0.023 seconds

Analysis of Overseas Research Trends Related to Artificial Intelligence (AI) in Elementary, Middle and High School Education (초·중·고 교육분야의 인공지능(AI) 관련 해외 연구동향 분석)

  • Jung, Young-Joo;Kim, Hea-Jin
    • Journal of Korean Library and Information Science Society
    • /
    • v.52 no.3
    • /
    • pp.313-334
    • /
    • 2021
  • This study aimed to analyze AI research trends related to elementary, middle, and high school education. To this end, the related literature was collected from the SCOPUS database and the publication period of the collected literature was from 1974 to March 2021, with 154 journal papers and 571 conference papers. Research trends were analyzed based on the co-occurrences analysis technique of 4,521 words of author keyword and index keyword included in these papers. As a result of the analysis, big data, data mining, data science and deep learning were found as the latest research trends with machine learning and there was a difference between elementary, middle and high school education. It can be seen that elementary school had a lot of robot-related research, middle school had a lot of game and data-related research, and high school had various and in-depth research. In discussion, we mapped the top 50 words common to elementary, middle, and high schools with the 'Artificial Intelligence Basics' curriculum of Korean Government and '5 Big Ideas' of the United States Government so that AI research can be viewed at a glance.

A Study on College Students' Perceptions of ChatGPT (ChatGPT에 대한 대학생의 인식에 관한 연구)

  • Rhee, Jung-uk;Kim, Hee Ra;Shin, Hye Won
    • Journal of Korean Home Economics Education Association
    • /
    • v.35 no.4
    • /
    • pp.1-12
    • /
    • 2023
  • At a time when interest in the educational use of ChatGPT is increasing, it is necessary to investigate the perception of ChatGPT among college students. A survey was conducted to compare the current status of internet and interactive artificial intelligence use and perceptions of ChatGPT after using it in the following courses in Spring 2023; 'Family Life and Culture', 'Fashion and Museums', and 'Fashion in Movies' in the first semester of 2023. We also looked at comparative analysis reports and reflection diaries. Information for coursework was mainly obtained through internet searches and articles, but only 9.84% used interactive AI, showing that its application to learning is still insufficient. ChatGPT was first used in the Spring semester of 2023, and ChatGPT was mainly used among conversational AI. ChatGPT is a bit lacking in terms of information accuracy and reliability, but it is convenient because it allows students to find information while interacting easily and quickly, and the satisfaction level was high, so there was a willingness to use ChatGPT more actively in the future. Regarding the impact of ChatGPT on education, students said that it was positive that they were self-directed and that they set up a cooperative class process to verify information through group discussions and problem-solving attitudes through questions. However, problems were recognized that lowered trust, such as plagiarism, copyright, data bias, lack of up-to-date data learning, and generation of inaccurate or incorrect information, which need to be improved.

A Study on Evaluation in College Mathematics Education in the New Normal Era (뉴노멀(New Normal) 시대 대학수학교육에서의 과정중심 PBL 평가 - '인공지능을 위한 기초수학' 강좌 사례를 중심으로 -)

  • Lee, Sang-Gu;Ham, Yoonmee;Lee, Jae Hwa
    • Communications of Mathematical Education
    • /
    • v.34 no.4
    • /
    • pp.421-437
    • /
    • 2020
  • Problem/Project based learning(PBL) is a student-centered teaching method in which students collaboratively solve problems and reflect their experiences. According to the results of PBL study and the experiences of the authors in PBL instruction, this paper introduced the necessities, output and significance of learning process PBL evaluation method and sums up our PBL evaluation process. The issue of appropriate and fair evaluation has been raised in untact (non-contact) university mathematics education due to the novel coronavirus (COVID-19) of the year 2020. To this end, when we had the course on for the summer semester held at S University in the summer of 2020. To ensure the fairness in evaluation and to improve the quality of our college math education, the PBL evaluation method was fully adapted. As a result, most of the students who took the lecture have learned a wide range of related knowledge without a single exception, and students agreed it is an ideal, fair, rational, and effective evaluation method applicable to other online courses in the era of untact education. This case was summarized in detail and introduced in this paper.

A Study on the Analysis Method of Artificial Intelligence for Real-Time Data Prediction. (실시간 데이터 예측을 위한 인공지능 분석 방법 연구)

  • Hong, Phil-Doo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.547-549
    • /
    • 2021
  • In Artificial Intelligence analysis, the process of creating a model and verifying it is a task that requires computational processing time because it is Batch Processing performed with already generated data. We need to model, validate, and predict real-time data, such as stocks and defense information, with data generated directly in front of us. As a solution to this, we solve it by applying techniques to segment the data required for artificial intelligence modeling tasks in order of time processing and distribute the data across multiple processes.

  • PDF

Effect of block-based Machine Learning Education Using Numerical Data on Computational Thinking of Elementary School Students (숫자 데이터를 활용한 블록 기반의 머신러닝 교육이 초등학생 컴퓨팅 사고력에 미치는 효과)

  • Moon, Woojong;Lee, Junho;Kim, Bongchul;Seo, Youngho;Kim, Jungah;OH, Jeongcheol;Kim, Yongmin;Kim, Jonghoon
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.2
    • /
    • pp.367-375
    • /
    • 2021
  • This study developed and applied an artificial intelligence education program as an educational method for increasing computational thinking of elementary school students and verified its effectiveness. The educational program was designed based on the results of a demand analysis conducted using Google survey of 100 elementary school teachers in advance according to the ADDIE(Analysis-Design-Development-Implementation-Evaluation) model. Among Machine Learning for Kids, we use scratch for block-based programming and develop and apply textbooks to improve computational thinking in the programming process of learning the principles of artificial intelligence and solving problems directly by utilizing numerical data. The degree of change in computational thinking was analyzed through pre- and post-test results using beaver challenge, and the analysis showed that this study had a positive impact on improving computational thinking of elementary school students.

Brainstorming using TextRank algorithms and Artificial Intelligence (TextRank 알고리즘 및 인공지능을 활용한 브레인스토밍)

  • Sang-Yeong Lee;Chang-Min Yoo;Gi-Beom Hong;Jun-Hyuk Oh;Il-young Moon
    • Journal of Practical Engineering Education
    • /
    • v.15 no.2
    • /
    • pp.509-517
    • /
    • 2023
  • The reactive web service provides a related word recommendation system using the TextRank algorithm and a word-based idea generation service selected by the user. In the related word recommendation system, the method of weighting each word using the TextRank algorithm and the probability output method using SoftMax are discussed. The idea generation service discusses the idea generation method and the artificial intelligence reinforce-learning method using mini-GPT. The reactive web discusses the linkage process between React, Spring Boot, and Flask, and describes the overall operation method. When the user enters the desired topic, it provides the associated word. The user constructs a mind map by selecting a related word or adding a desired word. When a user selects a word to combine from a constructed mind-map, it provides newly generated ideas and related patents. This web service can share generated ideas with other users, and improves artificial intelligence by receiving user feedback as a horoscope.

Ways to Restructure Science Convergence Elective Courses in Preparation for the High School Credit System and the 2022 Revised Curriculum (고교학점제와 2022 개정 교육과정에 대비한 과학과 융합선택과목 재구조화 방안 탐색)

  • Kwak, Youngsun
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.14 no.2
    • /
    • pp.112-122
    • /
    • 2021
  • The goal of this study is to explore ways to restructure Convergence Elective Courses in science in preparation for the high school credit system, ahead of the 2022 revised science curriculum. This study started from the problem that the 2015 revised science curriculum has not guaranteed science subject choice for students with non-science/engineering career aptitudes. To this end, a survey was conducted by randomly sampling high schools across the country. A total of 1,738 students responded to the questionnaire of 3 science elective courses such as Science History, Life & Science, Convergence Science. In addition, in-depth interviews with 12 science teachers were conducted to examine the field operation of these three courses, which will be classified and revised as Convergence Elective subjects in the 2022 revised curriculum. According to the results of the study, high school students perceive these three courses as science literacy courses, and find these difficult to learn due to lack of personal interest, and difficulties in content itself. The reason students choose these three courses is mainly because they have aptitude for science, or these courses have connection with their desired career path. Teachers explained that students mainly choose Life & Science, and both teachers and students avoid Science History because the course content is difficult. Based on the research results, we suggested ways to restructure Convergence Electives for the 2022 revised curriculum including developing convergence electives composed of interdisciplinary convergence core concepts with high content accessibility, developing convergence electives with core concepts related to AI or advanced science, developing module-based courses, and supporting professional development of teachers who will teach interdisciplinary convergence electives.

Development of checklist questions to measure AI capabilities of elementary school students (초등학생의 AI 역량 측정을 위한 체크리스트 문항 개발)

  • Eun Chul Lee;YoungShin Pyun
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.3
    • /
    • pp.7-12
    • /
    • 2024
  • The development of artificial intelligence technology changes the social structure and educational environment, and the importance of artificial intelligence capabilities continues to increase. This study was conducted with the purpose of developing a checklist of questions to measure AI capabilities of elementary school students. To achieve the purpose of the study, a Delphi survey was used to analyze literature and develop questions. For literature analysis, two domestic studies, five international studies, and the Ministry of Education's curriculum report were collected through a search. The collected data was analyzed to construct core competency measurement elements. The core competency measurement elements consisted of understanding artificial intelligence (6 elements), artificial intelligence thinking (4 elements), artificial intelligence ethics (4 elements), and artificial intelligence social-emotion (3 elements). Considering the knowledge, skills, and attitudes of the constructed measurement elements, 19 questions were developed. The developed questions were verified through the first Delphi survey, and 7 questions were revised according to the revision opinions. The validity of 19 questions was verified through the second Delphi survey. The checklist items developed in this study are measured by teacher evaluation based on performance and behavioral observations rather than a self-report questionnaire. This has the implication that the measurement results of competency are raised to a reliable level.

A Study of AI Education Program Based on Big Data: Case Study of the General Education High School (빅데이터 기반 인공지능 교육프로그램 연구: 일반계 고등학교 사례를 중심으로)

  • Ye-Hee, Jeong;Hyoungbum, Kim;Ki Rak, Park;Sang-Mi, Yoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.1
    • /
    • pp.83-92
    • /
    • 2023
  • The purpose of this research is to develop a creative education program that utilizes AI education program based on big data for general education high schools, and to investigate its effectiveness. In order to achieve the purpose of the research, we developed a creative education program using artificial intelligence based on big data for first-year general high school students, and carried out on-site classes at schools and a validation process by experts. In order to measure the creative problem-solving ability and class satisfaction of high school students, a creative problem-solving ability test was conducted before and after the program application, and a class satisfaction test was conducted after the program. The results of this study are as follows. First, AI education program based on big data were statistically effective to improve the creative problem solving ability according to independent sample t test about 'problem discovery and analysis', 'idea generation', 'execution plan', 'conviction and communication', and 'innovation tendency' except 'execution', 'the difference between pre- and post-scores of male student and female student' on first year high school students. Secondly, in satisfaction conducted after classes of AI education program based on big data, the average of 'Satisfaction', 'Interest', 'Participation', 'Persistence' were 3.56 to 3.92, and the overall average was 3.78. Therefore, it was investigated that there was a lesson effect of the AI education program based on big data developed in this research.

Development and Validation of Ethical Awareness Scale for AI Technology (인공지능기술 윤리성 인식 척도개발 연구)

  • Kim, Doeyon;Ko, Younghwa
    • Journal of Digital Convergence
    • /
    • v.20 no.1
    • /
    • pp.71-86
    • /
    • 2022
  • The purpose of this study is to develop and validate a scale to measure the ethical awareness of users who accept artificial intelligence technology or service. To this end, the constructs and properties of AI ethics were identified through literature analysis on AI ethics. Reliability and validity were assessed through a preliminary survey(N=273), after conducting an open-type survey to men and women(N=133) in 10s to 70s nationwide, extracting the first questions, and reviewing them by experts. The results of an online survey conducted on men and women(N=500) were refined by confirmatory factor analysis. Finally, an AI technology ethics scale was developed. The AI technology ethics awareness scale was developed with 16 questions in total of 4 factors (transparency, safety, fairness, accountability) so that general awareness of ethics related to AI technology can be measured by detailed factors. In addition, through follow-up research, it will be possible to reveal the relationship with measurement variables in various fields by using the ethical awareness scale of artificial intelligence technology.