• Title/Summary/Keyword: 인공지능과 시뮬레이션

Search Result 190, Processing Time 0.029 seconds

Efficient Signal Detection Based on Artificial Intelligence for Power Line Communication Systems (전력선통신 시스템을 위한 인공지능 기반 효율적 신호 검출)

  • Kim, Do Kyun;Hwang, Yu Min;Sim, Issac;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.2
    • /
    • pp.42-45
    • /
    • 2017
  • It is known that power line communication systems have more noise than general wired communication systems due to the high voltage that flows in power line cables, and the noise causes a serious performance degradation. In order to mitigate performance degradation due to such noise, this paper proposes an artificial intelligence algorithm based on polynomial regression, which detects signals in the impulse noise environment in the power line communication system. The polynomial regression method is used to predict the original transmitted signal from the impulse noise signal. Simulation results show that the signal detection performance in the impulse noise environment of the power line communication is improved through the artificial intelligence algorithm proposed in this paper.

Hybrid AI Based Process Scheduler for Asymmetric Multicore Processor to Improve Power Efficiency (전력 효율 향상을 위한 하이브리드 인공지능 기반의 비대칭 멀티코어 프로세서용 프로세스 스케줄러)

  • Jeong, Won Seob;Kim, Seung Hun;Lee, Sang-Min;Ro, Won Woo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.180-183
    • /
    • 2013
  • 근래의 프로세서는 하나의 다이 위에 여러 개의 코어를 배치한 멀티코어 형태를 띠고 있다. 최근에는 프로세서의 에너지 소비량을 줄이기 위해 비대칭 멀티코어를 활용하여 동일한 성능을 유지하며 소비전력을 낮추는 방법에 대한 연구가 활발히 진행되고 있다. 비대칭 멀티코어의 장점을 최대한 활용하기 위해서는 대칭형 멀티코어와는 달리 실행해야 할 프로세스와 상이한 코어간의 작동 특성을 고려해야 한다. 본 논문에서는 전력 소비 효율 향상을 위해 프로세스 스케줄링 알고리즘에 하이브리드 인공지능 기술인 Adaptive Neuro Fuzzy Inference System (ANFIS)를 적용하여 각 프로세스에 적합한 코어를 찾아 할당하는 방법을 제안한다. 시뮬레이션 결과 제안하는 프로세스 스케줄러는 리눅스의 CFS 대비 평균 35.4% 낮은 Energy Delay Product (EDP)를 보였으며 이를 통해 하이브리드 인공지능을 적용한 프로세스 스케줄링 알고리즘의 유효성을 입증하였다.

Modeling and Simulation on One-vs-One Air Combat with Deep Reinforcement Learning (깊은강화학습 기반 1-vs-1 공중전 모델링 및 시뮬레이션)

  • Moon, Il-Chul;Jung, Minjae;Kim, Dongjun
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.1
    • /
    • pp.39-46
    • /
    • 2020
  • The utilization of artificial intelligence (AI) in the engagement has been a key research topic in the defense field during the last decade. To pursue this utilization, it is imperative to acquire a realistic simulation to train an AI engagement agent with a synthetic, but realistic field. This paper is a case study of training an AI agent to operate with a hardware realism in the air-warfare dog-fighting. Particularly, this paper models the pursuit of an opponent in the dog-fighting setting with a gun-only engagement. In this context, the AI agent requires to make a decision on the pursuit style and intensity. We developed a realistic hardware simulator and trained the agent with a reinforcement learning. Our training shows a success resulting in a lead pursuit with a decreased engagement time and a high reward.

Performance Comparison Analysis of AI Supervised Learning Methods of Tensorflow and Scikit-Learn in the Writing Digit Data (필기숫자 데이터에 대한 텐서플로우와 사이킷런의 인공지능 지도학습 방식의 성능비교 분석)

  • Jo, Jun-Mo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.4
    • /
    • pp.701-706
    • /
    • 2019
  • The advent of the AI(: Artificial Intelligence) has applied to many industrial and general applications have havingact on our lives these days. Various types of machine learning methods are supported in this field. The supervised learning method of the machine learning has features and targets as an input in the learning process. There are many supervised learning methods as well and their performance varies depends on the characteristics and states of the big data type as an input data. Therefore, in this paper, in order to compare the performance of the various supervised learning method with a specific big data set, the supervised learning methods supported in the Tensorflow and the Sckit-Learn are simulated and analyzed in the Jupyter Notebook environment with python.

Spectrum Assignment Scheme Based on Artificial Intelligence for Power Line Communication Systems (전력선통신 시스템을 위한 인공지능 기반 스펙트럼 할당 기법)

  • Kim, Do Kyun;Hwang, Yu Min;Hong, Seung Kwan;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.2
    • /
    • pp.46-50
    • /
    • 2017
  • In this paper, we propose an artificial intelligence based spectrum allocation scheme for power line communication system. The frequency band of the transmitted signal can be adjusted through the spectrum allocation technique, thereby avoiding interference. This improves the performance of the transmission signal and the spectral efficiency. Through the simulation results, we show that the proposed spectrum allocation technique improves the spectral efficiency and improve the communication performance.

A Study on the Automatic Extraction of Fomulation and Properties in Chemical Field Patent Document by Using Machine Learning Technology (기계학습 기술을 활용한 화학분야 특허문서의 조성/물성 정보 자동추출 방법 연구)

  • Kim, Hongki;Lee, Hayoung;Park, Jinwoo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.277-280
    • /
    • 2019
  • 본 논문에서는 화학분야 특허 문서에 존재하는 도표(TABLE) 데이터를 인공지능 기술을 활용하여 자동으로 추출하고 정형화된 형태로 가공하는 방법을 제안한다. 특허 문서에서 도표 데이터는 실시예에서 실험결과나 비교결과를 간결하고 가시적으로 표현하기 위하여 주로 사용되나, 셀의 속성을 정의하는 헤더부분과 수치가 표현되는 값 부분의 경계가 모호하여 구조화하는데 어려움이 있다. 본 논문에서 제안하는 방법은 소량의 학습데이터를 구축하고 기계학습을 통해 도표에 존재하는 셀의 속성을 예측하고, 예측된 속성을 토대로 조성과 물성 정보를 자동으로 구분하여 추출하는 방법을 제시한다. 제시된 방법을 활용하여 화학 분야 조성물 특허의 도표데이터에 시뮬레이션 결과 각 항목별 98.17%의 속성 예측 정확도를 나타내었으며 기존 규칙기반 연구보다 작업난이도, 예측정확도에서 우수한 성과를 보인다.

  • PDF

Image Processing Processor Design for Artificial Intelligence Based Service Robot (인공지능 기반 서비스 로봇을 위한 영상처리 프로세서 설계)

  • Moon, Ji-Youn;Kim, Soo-Min
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.633-640
    • /
    • 2022
  • As service robots are applied to various fields, interest in an image processing processor that can perform an image processing algorithm quickly and accurately suitable for each task is increasing. This paper introduces an image processing processor design method applicable to robots. The proposed processor consists of an AGX board, FPGA board, LiDAR-Vision board, and Backplane board. It enables the operation of CPU, GPU, and FPGA. The proposed method is verified through simulation experiments.

Development of a case-based nursing education program using generative artificial intelligence (생성형 인공지능을 활용한 사례 기반 간호 교육 프로그램 개발)

  • Ahn, Jeonghee;Park, Hye Ok
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.29 no.3
    • /
    • pp.234-246
    • /
    • 2023
  • Purpose: This study aimed to develop a case-based nursing education program using generative artificial intelligence and to assess its usability and applicability in nursing curriculums. Methods: The program was developed by following the five steps of the ADDIE model: analysis, design, development, implementation, and evaluation. A panel of five nursing professors served as experts to implement and evaluate the program. Results: Utilizing ChatGPT, six program modules were designed and developed based on experiential learning theory. The experts' evaluations confirmed that the program was suitable for case-based learning, highly usable, and applicable to nursing education. Conclusion: Generative artificial intelligence was identified as a valuable tool for enhancing the effectiveness of case-based learning. This study provides insights and future directions for integrating generative artificial intelligence into nursing education. Further research should be attempted to implement and evaluate this program with nursing students.

Design of Computational Science SW Service Framework for Digital Convergence R&D Service Platform (디지털 융합 R&D 서비스 플랫폼을 위한 계산과학 SW 서비스 프레임워크 설계)

  • Jeon, Inho;Han, Sunggeun;Lee, Jungchul
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.693-695
    • /
    • 2022
  • 디지털 기술이 각 분야의 기술과 융합하는 디지털 전환(Digital Transformation)은 4차 산업혁명을 가속화 하고 있다. 국가적으로 클라우드·인공지능·데이터 관련 정책 수립과 디지털 댐 사업, 데이터 플랫폼 사업 등을 통해 산업분야의 디지털 전환을 추진 중이나, 소재·바이오 등 극히 일부 과학기술 분야 외에 클라우드, 데이터, 인공지능, 시뮬레이션 등을 종합적으로 지원하는 국가적 지원이 전무한 실정이다. 본 논문은 국가 R&D의 디지털 전환 가속화를 위한 디지털융합R&D 플랫폼 제공을 위해 계산과학 SW를 서비스하기 위한 프레임워크를 설계하였다.

Single Wheel Vehicle controlled Reinforcement (인공지능 강화학습을 통한 일륜전동차 제어)

  • Shi-Hyeon Cheon;Byoung-Jin Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.577-578
    • /
    • 2023
  • 외발자전거는 서커스 곡예의 소재로 사용될 정도로 일반인이 타기 어렵다. 하지만, 구조가 단순하고 부피가 작고 가벼워 개인용 이동 수단으로 장점이 많다. 바퀴가 하나이므로 자유도가 높아서 좁거나 곡선반지름이 작은 길에서도 유리하다. 최근 전기자전거뿐만 아니라 전동보드, 전동휠 등 다양한 형태의 전력 구동형 개인 이동 수단들이 많이 등장하고 이용되고 있는데 스스로 균형을 유지하여 안전하고 쉽게 탈 수 있는 외발 전동차를 개발을 위해 인공지능 강화학습을 적용한 자동제어장치를 시뮬레이션을 통해 구현하고자 한다.