본 연구는 최근 펜데믹 위기에서 교육의 변화하는 모습을 점검하고 미래의 학습에 대한 모습들을 예측하기 위해 이러닝과 학습분석에 대한 신흥기술의 동향을 살펴보고자 한다. 연구방법으로 신흥기술의 '하이프 사이클'과 '이러닝 예측 하이프 커버'를 기반으로 하여 각 단계별 기술들을 점검하고 펜데믹 위기에서 더 공고히 된 이러닝과 학습 관련 기술들이 무엇인지 살펴본다. 또한 하이프 사이클의 5단계인 기술촉발 단계, 부풀려진 기대의 정점 단계, 환멸 단계, 계몽 단계, 생산성 안정 단계인 각 단계별 학습과 관련된 기술들은 어떤 것이 있으며, 그 기술들이 이러닝과 학습분석에 어떠한 영향을 미칠 것인지 예측해 본다. 향후 연구로는 본 연구를 기반으로 인공지능이 이러닝과 학습분석에서의 역할을 알아보고자 한다.
인터넷 기술의 발달에 따라 교육분야에서도 이를 도입하고 있다. 또한, 웹을 기반으로 하는 문제학습 시스템에서는 피험자의 학습효과를 높이려는 방법으로 학습결과를 반영하는 문항분석 이론이 연구되고 있다. 그러나, 기존의 웹 기반 학습시스템은 대부분 일방적인 학습내용의 제공이나 반복적인 학습에 그치고 있어 학습자의 학습효과를 기대하기 어렵다. 본 연구에서는 문항분석이론 중 문항난이도를 이용한 학습단계별 웹 코스웨어를 설계 및 구현하였다. 학습단계 설정은 문항난이도의 결과에 따라 상.중.하의 단계로 나뉘어 학습자가 학습을 하기 전에 선택 할 수 있도록 하였다.
강화 학습(Reinforcement Learning)을 실제 문제에 적용하는 데 있어 가장 큰 문제는 차원성의 저주(Curse of dimensionality)였다 문제가 커짐에 따라 목적을 이루기 위해서 더 많은 단계의 판단이 필요하고 이에 따라 문제의 해결이 지수적으로 어려워지게 된다. 이를 해결하기 위해 문제를 여러 단계로 나누어 단계별로 학습하는 계층적 강화 학습(Hierarchical Reinforcement Learning)이 제시된 바 있다 하지만 대부분의 계층적 강화 학습 방법들은 사전에 문제의 구조를 아는 것을 전제로 하며 큰 사이즈의 문제를 간단히 표현할 방법을 제시하지 않는다. 따라서 이들 방법들도 실제적인 문제에 바로 적용하기에는 적합하지 않다. 최근 이루어진 복잡계 네트워크(Complex Network)에 대한 연구에 착안하여 본 논문은 자기조직화하는 생장 네트워크(Self organizing growing network)를 기반으로 한 간단한 환경 표현 모델을 사용하는 강화 학습 알고리즘을 제안한다 네트웍은 복잡계 네트웍이 갖는 성질들을 유지하도록 자기 조직화되고, 노드들 간의 거리는 작은 세상 성질(Small World Property)에 따라 전체 네트웍의 큰 사이즈에 비해 짧게 유지된다. 즉 판단해야할 단계의 수가 적게 유지되기 때문에 이 방법으로 차원성의 저주를 피할 수 있다.
본 논문에서는 다층 퍼셉트론 신경망 학습을 위한 새로운 두 단계 학습방법을 제안하고 이를 옵션 가격결정 모형에 응용하였다. 제안된 신경망 학습 알고리즘의 첫번째 단계는 Levenberg-Marquardt 알고리즘을 이용하여 빠르게 국소최적해를 찾는 것이고 두 번째 단계는 첫 번째 단계에서 찾은 국소최적해가 원하는 수준에 미치지 못할 경우 선형탐색 터널링을 이용해서 더 나은 해를 찾는 것이다. 이 두 단계를 반복적으로 수행함으로써 연결가중치 공간에서 구하고자 하는 해를 빠르고 안정적으로 찾을 수 있다. 현재 옵션가격결정 모형으로 많이 이용되고 있는 Black-Scholes 모형의 문제점을 극복하기 위해서 제안된 신경망 모형을 옵션가격결정 문제에 사용하였다. 이 모형을 KOSPI200 옵션 데이터로 실험한 결과 Black-Scholes 모형에 비해 검증오차를 60% 가량 줄일 수 있었다.
이커머스 리뷰와 같은 특정 도메인의 경우, 텍스트 표현벡터 학습을 위한 양질의 오픈 학습 데이터를 구하기 어렵다. 또한 사람이 수동으로 검수하며 학습데이터를 만드는 경우, 많은 시간과 비용을 소모하게 된다. 따라서 본 논문에서는 수동으로 검수된 데이터없이 양질의 텍스트 표현벡터를 만들 수 있도록 두 단계의 대조 학습 시스템을 제안한다. 이 두 단계 대조 학습 시스템은 레이블링 된 학습데이터가 필요하지 않은 자기지도 학습 단계와 리뷰의 특성을 고려한 자동 레이블링 기반의 지도 학습 단계로 구성된다. 또한 노이즈에 강한 오류함수와 한국어에 유효한 데이터 증강 기법을 적용한다. 그 결과 스피어먼 상관 계수 기반의 성능 평가를 통해, 베이스 모델과 비교하여 성능을 14.03 향상하였다.
본 연구에서는 학습자의 수준에 적합한 문제를 제공하는 문제은행 시스템을 설계하고 개발하였다. 이 시스템은 CAT 기법에 응용되는 문항반응 이론을 사용하여 현재까지의 학습결과를 바탕으로 학습자의 수준을 동적으로 계산하고, 이를 바탕으로 학습자의 수준에 가장 적절한 문제를 다음 문제로 제시하는 과정을 반복하면서 수준별 개별 학습을 지원한다. 이 시스템은 테스트 단계, 본 학습 단계와 복습 단계로 이루어진다. 테스트 단계에서는 학습자의 초기 수준을 가능한 한 정확하게 계산하여 본 학습의 수준을 정한다. 본 학습에서는 문항반응 이론에 의한 수준별 개별 학습이 이루어진다. 학습이 끝난 후, 틀린 문제를 복습하여 학습이 견고해지도록 하기 위해, 마지막으로 복습단계가 포함되어 있다. 학습결과로 제시되는 내용은 흔히 사용되는 접수가 아니라, 문항반응 이론에 의해 계산된 학습자의 능력을 절대 수치값으로 나타낸 것으로, 이를 통해 학습 능력의 향상 정도를 객관적으로 파악할 수 있도록 하였다.
이 논문에서는 정보 영재의 사고력 신장을 위한 교수-학습 프로그램으로 트리 구성과 트리 탐색에 기반을 둔 모형을 제시하고 분석한다. 제시된 교수-학습 모형은 문제를 표현하는 트리의 유형에 따라 세 가지 유형으로 구분되며, 각 모형은 다시 네 가지 단계의 학습 단계로 구성된다. 구성되는 트리의 모형에 따라 적용되는 알고리즘에는 recursion, heuristic, minimax 탐색 방법 등이 도입되어 적용된다. 이 모델은 저 수준의 사고력을 요구하는 간단한 모형에서 출발하여 고 수준의 사고력을 요구하는 복잡한 모형으로 발전시키는 교육 방법을 제시함으로써 사고력 신장의 정도에 따라 초등학교 학생들로부터 중학교, 고등학교 학생들에 이르기 까지 대상을 확대하여 점진적으로 적용할 수 있는 교육 방법이 될 수 있을 것으로 사료된다. 이 교육 프로그램 모형을 실제 교육 현장에서 적용하여 교수-학습 프로그램 유형별로 학습 단계간의 적용 결과를 비교 분석한다.
본 논문에서는 학습자들의 학습특성 및 학습 능력에 따라 문제은행에서 문항을 선택하는 기준과 학습코스를 재구성하기 위한 방법을 제안한다. 본 논문에서 제안한 시스템은 학습단계와 평가단계를 연계하여 평가 단계에서 추정된 학습자의 능력에 따라 차기 학습단계에서 수준별 학습내용을 재구성하여 학습자에게 제공함으로써 합리적인 학습이 가능하도록 지원하고 있다. 이를 위해 학습자의 학습능력을 정확하게 판단 할 수 있도록 문항반응 이론에 의한 학습자 능력평가 모듈을 만들고, 가중치 값을 갖는 문항특성모델을 개발하여 적용함으로써 학습과정의 우선순위를 부여하여 학습코스를 재구성하는 시스템을 설계 및 구현하였다.
이 논문에서는 Zoltan Dienes의 수학학습을 위한 6단계 이론을 재조명해보고자 하였다. 국내에서는 Dienes가 1971년에 처음 발표한 내용이 대략적으로 알려져 있을 뿐, 구체적인 보기가 소개되지 않았다. 이 연구는 Dienes가 제시한 정수 학습의 보기를 통해 6단계 이론이 함의하는 바를 보다 구체적으로 살펴보고자 하였다. 연구 결과, 6단계 이론의 본질은 수학적 개념 형성을 위한 추상화 과정에 있으며, 그러한 과정에서 놀이나 게임은 수학적 구조의 원시적 형태라 할 수 있는 규칙성을 제공해주며, 전 단계에 걸쳐 학습자와 수학을 연결해 주는 중요한 매개 역할을 하도록 기대된다는 점을 밝혔다. 그러나 정수의 보기를 들어 살펴본 게임에는 몇 가지 문제점이 제기되었으며, 이러한 문제점들이 극복되지 않는 한 6단계 이론이 현장에 보급될 가능성은 매우 낮은 것으로 결론 내렸다. 그럼에도 불구하고 6단계 이론이 오늘날의 교육에 시사하는 바를 마지막으로 덧붙였다.
강화 학습(Reinforcement Learning)을 실제 문제에 적용하는 데 있어 가장 큰 문제는 차원성의 저주(Curse of dimensionality)이다. 문제가 커짐에 따라 목적을 이루기 위해서 더 않은 단계의 판단이 필요하고 이에 따라 문제의 해결이 지수적으로 어려워지게 된다. 이를 해결하기 위칠 문제를 여러 단계로 나누어 단계별로 학습하는 계층적 강화 학습(Hierarchical Reinforcement Learning)이 제시된 바 있다. 하지만 대부분의 계층적 강화 학습 방법들은 사전에 문제의 구조를 아는 것을 전제로 하며 큰 사이즈의 문제를 간단히 표현할 방법을 제시하지 않는다. 따라서 이들 방법들도 실제적인 문제에 바로 적용하기에는 적합하지 않다. 이러한 문제점들을 해결하기 위해 복잡계 네트워크(Complex Network)가 갖는 작은 세상 성질(Small world Property)에 착안하여 자기조직화 하는 생장 네트워크(Self organizing growing network)를 기반으로 한 환경 표현 모델이 제안된 바 있다. 이러한 모델에서는 문제 크기가 커지더라도 네트워크의 사이즈가 크게 커지지 않기 때문에 문제의 난이도가 크기에 따라 크게 증가하지 않을 것을 기대할 수 있다. 본 논문에서는 이러한 환경 모델을 사용한 강화 학습 알고리즘을 구현하고 실험을 통하여 각 모델이 강화 학습의 문제 사이즈에 따른 성능에 끼치는 영향에 대해 알아보았다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.