• Title/Summary/Keyword: 이진 필드 곱셈

Search Result 8, Processing Time 0.025 seconds

Implementation of Quantum Gates for Binary Field Multiplication of Code based Post Quantum Cryptography (부호 기반 양자 내성 암호의 이진 필드 상에서 곱셈 연산 양자 게이트 구현)

  • Choi, Seung-Joo;Jang, Kyong-Bae;Kwon, Hyuk-Dong;Seo, Hwa-Jeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.8
    • /
    • pp.1044-1051
    • /
    • 2020
  • The age of quantum computers is coming soon. In order to prepare for the upcoming future, the National Institute of Standards and Technology has recruited candidates to set standards for post quantum cryptography to establish a future cryptography standard. The submitted ciphers are expected to be safe from quantum algorithm attacks, but it is necessary to verify that the submitted algorithm is safe from quantum attacks using quantum algorithm even when it is actually operated on a quantum computer. Therefore, in this paper, we investigate an efficient quantum gate implementation for binary field multiplication of code based post quantum cryptography to work on quantum computers. We implemented the binary field multiplication for two field polynomials presented by Classic McEliece and three field polynomials presented by ROLLO in generic algorithm and Karatsuba algorithm.

An Efficient Bit-serial Systolic Multiplier over GF($2^m$) (GF($2^m$)상의 효율적인 비트-시리얼 시스톨릭 곱셈기)

  • Lee Won-Ho;Yoo Kee-Young
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.1_2
    • /
    • pp.62-68
    • /
    • 2006
  • The important arithmetic operations over finite fields include multiplication and exponentiation. An exponentiation operation can be implemented using a series of squaring and multiplication operations over GF($2^m$) using the binary method. Hence, it is important to develop a fast algorithm and efficient hardware for multiplication. This paper presents an efficient bit-serial systolic array for MSB-first multiplication in GF($2^m$) based on the polynomial representation. As compared to the related multipliers, the proposed systolic multiplier gains advantages in terms of input-pin and area-time complexity. Furthermore, it has regularity, modularity, and unidirectional data flow, and thus is well suited to VLSI implementation.

Montgomery Multiplier Supporting Dual-Field Modular Multiplication (듀얼 필드 모듈러 곱셈을 지원하는 몽고메리 곱셈기)

  • Kim, Dong-Seong;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.6
    • /
    • pp.736-743
    • /
    • 2020
  • Modular multiplication is one of the most important arithmetic operations in public-key cryptography such as elliptic curve cryptography (ECC) and RSA, and the performance of modular multiplier is a key factor influencing the performance of public-key cryptographic hardware. An efficient hardware implementation of word-based Montgomery modular multiplication algorithm is described in this paper. Our modular multiplier was designed to support eleven field sizes for prime field GF(p) and binary field GF(2k) as defined by SEC2 standard for ECC, making it suitable for lightweight hardware implementations of ECC processors. The proposed architecture employs pipeline scheme between the partial product generation and addition operation and the modular reduction operation to reduce the clock cycles required to compute modular multiplication by 50%. The hardware operation of our modular multiplier was demonstrated by FPGA verification. When synthesized with a 65-nm CMOS cell library, it was realized with 33,635 gate equivalents, and the maximum operating clock frequency was estimated at 147 MHz.

Area Efficient Bit-serial Squarer/Multiplier and AB$^2$-Multiplier (공간 효율적인 비트-시리얼 제곱/곱셈기 및 AB$^2$-곱셈기)

  • 이원호;유기영
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.1_2
    • /
    • pp.1-9
    • /
    • 2004
  • The important arithmetic operations over finite fields include exponentiation, division, and inversion. An exponentiation operation can be implemented using a series of squaring and multiplication operations using a binary method, while division and inversion can be performed by the iterative application of an AB$^2$ operation. Hence, it is important to develop a fast algorithm and efficient hardware for this operations. In this paper presents new bit-serial architectures for the simultaneous computation of multiplication and squaring operations, and the computation of an $AB^2$ operation over $GF(2^m)$ generated by an irreducible AOP of degree m. The proposed architectures offer a significant improvement in reducing the hardware complexity compared with previous architectures, and can also be used as a kernel circuit for exponentiation, division, and inversion architectures. Furthermore, since the Proposed architectures include regularity and modularity, they can be easily designed on VLSI hardware and used in IC cards.

Design of LFSR Multipliers for Public-key Cryptosystem (공개키 암호 시스템을 위한 LFSR 곱셈기 설계)

  • 이진호;김현성
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.9 no.1
    • /
    • pp.43-48
    • /
    • 2004
  • This paper presents new architectures based on the linear feedback shia resister architecture over GF(2m). First we design a modular multiplier and a modular squarer, then propose an architecture by combing the multiplier and the squarer. All architectures use an irreducible AOP (All One Polynomial) as a modulus, which has the properties of all coefficients with '1'. The proposed architectures have lower hardware complexity than previous architectures. They could be. Therefore it is useful for implementing the exponentiation architecture, which is the con operation in public-key cryptosystems.

  • PDF

An Area-efficient Design of ECC Processor Supporting Multiple Elliptic Curves over GF(p) and GF(2m) (GF(p)와 GF(2m) 상의 다중 타원곡선을 지원하는 면적 효율적인 ECC 프로세서 설계)

  • Lee, Sang-Hyun;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.254-256
    • /
    • 2019
  • 소수체 GF(p)와 이진체 $GF(2^m)$ 상의 다중 타원곡선을 지원하는 듀얼 필드 ECC (DF-ECC) 프로세서를 설계하였다. DF-ECC 프로세서의 저면적 설와 다양한 타원곡선의 지원이 가능하도록 워드 기반 몽고메리 곱셈 알고리듬을 적용한 유한체 곱셈기를 저면적으로 설계하였으며, 페르마의 소정리(Fermat's little theorem)를 유한체 곱셈기에 적용하여 유한체 나눗셈을 구현하였다. 설계된 DF-ECC 프로세서는 스칼라 곱셈과 점 연산, 그리고 모듈러 연산 기능을 가져 다양한 공개키 암호 프로토콜에 응용이 가능하며, 유한체 및 모듈러 연산에 적용되는 파라미터를 내부 연산으로 생성하여 다양한 표준의 타원곡선을 지원하도록 하였다. 설계된 DF-ECC는 FPGA 구현을 하드웨어 동작을 검증하였으며, 0.18-um CMOS 셀 라이브러리로 합성한 결과 22,262 GEs (gate equivalences)와 11 kbit RAM으로 구현되었으며, 최대 100 MHz의 동작 주파수를 갖는다. 설계된 DF-ECC 프로세서의 연산성능은 B-163 Koblitz 타원곡선의 경우 스칼라 곱셈 연산에 885,044 클록 사이클이 소요되며, B-571 슈도랜덤 타원곡선의 스칼라 곱셈에는 25,040,625 사이클이 소요된다.

  • PDF

Systolic Architecture for Digit Level Modular Multiplication/Squaring over GF($2^m$) (GF($2^m$)상에서 디지트 단위 모듈러 곱셈/제곱을 위한 시스톨릭 구조)

  • Lee, Jin-Ho;Kim, Hyun-Sung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.1
    • /
    • pp.41-47
    • /
    • 2008
  • This paper presents a new digit level LSB-first multiplier for computing a modular multiplication and a modular squaring simultaneously over finite field GF($2^m$). To derive $L{\times}L$ digit level architecture when digit size is set to L, the previous algorithm is used and index transformation and merging the cell of the architecture are proposed. The proposed architecture can be utilized for the basic architecture for the crypto-processor and it is well suited to VLSI implementation because of its simplicity, regularity, and concurrency.

Design of Semi-Systolic Architecture for $AB^2$ Operation ($AB^2$ 연산을 위한 세미시스톨릭 구조 설계)

  • Lee Jin-Ho;Kim Hyun-Sung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.9 no.4
    • /
    • pp.41-46
    • /
    • 2004
  • This paper presents a new semi- systolic architecture for $AB^2$ operation. First of all the previous architecture proposed by Lee et al. is analysed and then we present a new algorithm and it's architecture for $AB^2$ operation based on AOP (all one polynomial) to solve the shortcomings in the architecture. Proposed architecture has an efficient configuration than other previous architectures. It is useful for implementing the exponentiation architecture, which is the core operation in public-key cryptosystems.

  • PDF