• Title/Summary/Keyword: 이중편파

Search Result 216, Processing Time 0.031 seconds

Application of an empirical method to improve radar rainfall estimation using cross governmental dual-pol. radars (범부처 이중편파레이더의 강우 추정 향상을 위한 경험적 방법의 적용)

  • Yoon, Jungsoo;Suk, Mi-Kyung;Nam, Kyung-Yeub;Park, Jong-Sook
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.7
    • /
    • pp.625-634
    • /
    • 2016
  • Three leading agencies under different ministries - Korea Meteorological Administration (KMA) in the ministry of Environment, Han river control office in the Ministry of Land, Infrastructure and Transport (MOLIT) and Weather Group of ROK Air Force in the Ministry of National Defense (MND) - have been operated radars in the purpose of observing weather, hydrology and military operational weather in Korea. Eight S-band dual-pol. radars have been newly installed or replaced by these ministries over different places by 2015. However each ministry has different aims of operating radars, observation strategies, data processing algorithms, etc. Due to the differences, there is a wide level of accuracy on observed radar data as well as the composite images made of the cross governmental radar measurement. Gaining fairly high level of accuracy on radar data obtained by different agencies has been shared as a great concern by the ministries. Thus, "an agreement of harmonizing weather and hydrological radar products" was made by the three ministries in 2010. Particularly, this is very important to produce better rainfall estimation using the cross governmental radar measurement. Weather Radar Center(WRC) in KMA has been developed an empirical method using measurements observed by Yongin testbed radar. This study is aiming to examine the efficiency of the empirical method to improve the accuracies of radar rainfalls estimated from cross governmental dual-pol. radar measurements. As a result, the radar rainfalls of three radars (Baengnyeongdo, Biseulsan, and, Sobaeksan Radar) were shown improvement in accuracy (1-NE) up to 70% using data from May to October in 2015. Also, the range of the accuracies in radar rainfall estimation, which were from 30% to 60% before adjusting polarimetric variables, were decreased from 65% to 70% after adjusting polarimetric variables.

Gain Enhancement of a Circularly-Polarized Patch Antenna with a Double-Layered Superstrate for Wireless LAN (무선 LAN용 원형편파 패치안테나에 이중 적층 상부덮개를 적용한 이득 향상)

  • Lee, Sangrok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.12
    • /
    • pp.2427-2433
    • /
    • 2015
  • A high-gain circularly-polarized patch antenna with a double-layered superstrate is proposed operating at a wireless LAN frequency. A superstrate has an array of metallic periodic unit cells and is located above the patch antenna with an air-gap. The designed antenna has a high gain of over 9.59dBi, which is the gain enhancement of 6.48dB compared to the patch antenna without superstrate. And it has a low axial ratio of under 3dB, so that it maintains the circular polarization of the patch antenna. The optimum air-gap height at the superstrate of $4{\times}4$ arrays is 25mm, which is equivalent to about $0.2{\lambda}$ at the frequency of 2.45GHz. We confirmed that the double-layered stacking of a superstrate increases the effective aperture size and hence it leads to enhance a gain of the patch antenna.

Wideband Dual-polarized Microstrip Antenna with H-shaped Coupling Slot (H-커플링 슬롯 광대역 이중편파 마이크로스트립 안테나)

  • Kim, Jang Wook;Jeon, Joo Seong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.4
    • /
    • pp.71-79
    • /
    • 2014
  • This paper investigates wideband dual-polarized microstrip antenna with H-shaped coupling slot. These types of antennas are used to prevent deterioration of transmission quality caused by terminal interference or multipath fading, which usually occur when many terminals are used in limited space such as hot-spot zones. The experimental results show that the impedance bandwidth ($SWR{\leq}2$) of 33.98% and the peak gain of 8.58 dBi (at 2.11 GHz) were obtained by the frequency band under 2.7 GHz. The proposed antenna is designed originally for multiple service bands with simple structure and easily be mass-produced for various commercial applications.

A Design of Dual-band Microstrip Antenna Loading Inverted-L-shaped Parasitic Elements Vertically at Radiation Apertures for GPS Applications (방사개구면에 역 L형 기생소자를 세운 GPS용 이중대역 마이크로스트립 안테나 설계)

  • Choi, Yoon-Seon;Woo, Jong-Myung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.5
    • /
    • pp.38-43
    • /
    • 2015
  • In this paper, we present novel dual-band microstrip antennas using inverted-L-shaped parasitic elements vertically at radiation apertures for GPS L1(1.575 GHz) and L2(1.227 GHz) bands. For making dual band which has large interval, the inverted-L-shaped parasitic element was loaded at the radiation aperture of a half-wavelength patch antenna(GPS L1) in opposite direction of the feeding point for receiving the low frequency(GPS L2). The low frequency occurs by perturbation and coupling between the patch and parasitic. Next, due to use circular polarizations at the GPS applications, two inverted-L-shaped parasitic elements were loaded at radiation apertures of each polarizations and the feeding point was moved at diagonal part of the patch. The dimensions of the designed circularly polarized antenna were $88.5{\times}79{\times}10.4mm^3$ ($0.36{\lambda}L{\times}0.32{\lambda}L{\times}0.04{\lambda}L$, ${\lambda}L$ is the free-space wavelength at 1.227 GHz). Measured -10 dB bandwidths were 116.3 MHz(7.4%) and 64.3 MHz(5.2%) at GPS L1 and L2 bands, respectively. All of these cover the respective required system bandwidths. The measured 3 dB axial ratio bandwidths were 11.7 MHz(0.74%) and 14 MHz(1.14%), respectively. Within each of the designed bands, broadside radiation patterns were observed.

Real-time bias correction of Beaslesan dual-pol radar rain rate using the dual Kalman filter (듀얼칼만필터를 이용한 이중편파 레이더 강우의 실시간 편의보정)

  • Na, Wooyoung;Yoo, Chulsang
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.3
    • /
    • pp.201-214
    • /
    • 2020
  • This study proposes a bias correction method of dual-pol radar rain rate in real time using the dual Kalman filter. Unlike the conventional Kalman filter, the dual Kalman filter predicts state variables with two systems (state estimation system and model estimation system) at the same time. Bias of rain rate is corrected by applying the bias correction ratio to the rain rate estimate. The bias correction ratio is predicted from the state-space model of the dual Kalman filter. This method is applied to a storm event with long duration occurred in July 2016. Most of the bias correction ratios are estimated between 1 and 2, which indicates that the radar rain rate is underestimated than the ground rain rate. The AR (1) model is found to be appropriate for explaining the time series of the bias correction ratio. The time series of the bias correction ratio predicted by the dual Kalman filter shows a similar tendency to that of observation data. As the variability of the bias correction increases, the dual Kalman filter has better prediction performance than the Kalman filter. This study shows that the dual Kalman filter can be applied to the bias correction of radar rain rate, especially for long and heavy storm events.

Design of a Vehicle-Mounted GPS Antenna for Accurate Positioning (차량 정밀 측위용 이중대역 GPS 안테나 설계)

  • Pham, Nu;Chung, Jae-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.2
    • /
    • pp.145-150
    • /
    • 2016
  • The capability of accurate positioning and tracking is necessary to implement an unmanned autonomous driving system. The moving-baseline GPS Technique is a promising candidate to mitigate positioning errors of conventional GPS system. It provides accurate positioning data based on the phase difference between received signals from multiple GPS antennas mounted on the same platform. In this paper, we propose a dual-band dual-circularly-polarized antenna suitable for the moving-baseline GPS. The proposed antenna operates at GPS L1 and L2 bands, and fed by the side of the antenna instead of the bottom. The antenna is firstly designed by calculating theoretical values of key parameters, and then optimized by means of 3D full-wave simulation software. Simulation and measurement results show that the optimized antenna offers 6.1% and 3.7% bandwidth at L1 and L2, respectively, with axial ratio bandwidth of more than 1%. The size of the antenna is $73mm{\times}73mm{\times}6.4mm$, which is small and low-profile.

Quantitative Rainfall Estimation for S-band Dual Polarization Radar using Distributed Specific Differential Phase (분포형 비차등위상차를 이용한 S-밴드 이중편파레이더의 정량적 강우 추정)

  • Lee, Keon-Haeng;Lim, Sanghun;Jang, Bong-Joo;Lee, Dong-Ryul
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.1
    • /
    • pp.57-67
    • /
    • 2015
  • One of main benefits of a dual polarization radar is improvement of quantitative rainfall estimation. In this paper, performance of two representative rainfall estimation methods for a dual polarization radar, JPOLE and CSU algorithms, have been compared by using data from a MOLIT S-band dual polarization radar. In addition, this paper presents evaluation of specific differential phase ($K_{dp}$) retrieval algorithm proposed by Lim et al. (2013). Current $K_{dp}$ retrieval methods are based on range filtering technique or regression analysis. However, these methods can result in underestimating peak $K_{dp}$ or negative values in convective regions, and fluctuated $K_{dp}$ in low rain rate regions. To resolve these problems, this study applied the $K_{dp}$ distribution method suggested by Lim et al. (2013) and evaluated by adopting new $K_{dp}$ to JPOLE and CSU algorithms. Data were obtained from the Mt. Biseul radar of MOLIT for two rainfall events in 2012. Results of evaluation showed improvement of the peak $K_{dp}$ and did not show fluctuation and negative $K_{dp}$ values. Also, in heavy rain (daily rainfall > 80 mm), accumulated daily rainfall using new $K_{dp}$ was closer to AWS observation data than that using legacy $K_{dp}$, but in light rain(daily rainfall < 80mm), improvement was insignificant, because $K_{dp}$ is used mostly in case of heavy rain rate of quantitative rainfall estimation algorithm.

Frequency Planning and Interference Rejection with Co-Channel Dual-Polarization Technique in B-WLL Applications (코채널 이중편파 기술을 적용한 B-WLL 의 주파수 배치 및 채널간섭 제거기에 대한 연구)

  • 이재원;서경환;정한욱
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.821-824
    • /
    • 1999
  • In this article, as a way of pursuing high spectral efficiency and flexible cell planning, co-channel dual-polarization techniques are suggested for B-WLL applications. It provides a double down stream capacity compared with conventional scheme and also makes some flexibility in cell planning. In order to implement co-channel B-WLL system, some frequency plans, interference cancellation methods, and system block diagrams are presented here.

  • PDF

Design and Fabrication of Dual Linear Polarization Stack Antenna for 4.7GHz Frequency Band (4.7 GHz 대역에서 동작하는 이중 선형편파 적층 안테나의 설계 및 제작)

  • Joong-Han Yoon;Chan-Se Yu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.251-258
    • /
    • 2023
  • In this paper, we propose DLP(Dual Linear Polarization) stack antenna for private network. The proposed antenna has general stack structure and design airgap between two substrate to obtain the maximum gain. Also, to improve cross polarization isolation, two feeding port is designed to separate for each substrate. The size of each patch antenna is 17.80 mm(W1)×16.70 mm(L1) for lower patch and 18.56 mm(W2)×18.73 mm(L2) for upper patch, which is designed on the FR-4 substrate which thickness (h) is 1.6 mm, and the dielectric constant is 4.3, and which is 40.0 mm(W)×40.0 mm(L) for total size of substrate. From the fabrication and measurement results, bandwidths of 100 MHz (4.74 to 4.84 GHz) for feeding port 1, and 150 MHz (4.67 to 4.82 GHz) for feeding port 2 are obtained on the basis of -10 dB return loss and transmission coefficient S21 is got under the -20 dB. Also, cross polarization isolation between each feeding port obtained

Joint Polarization and Frequency Assignment Algorithm Based on Graph Theory (그래프 이론 기반의 편파 및 주파수 지정 알고리즘)

  • Koo, Bonhong;Chae, Chan-Byoung;Park, Sung-Ho;Park, Hwi-Sung;Ham, Jae-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.8
    • /
    • pp.954-957
    • /
    • 2016
  • In cases of military communication plan, it often requires to find a proper solution for frequency assignment within feasible time. Minimizing the number of used resources are related to cost issue, hence it is a critical objective. When the dual polar antenna is used, the performance can be much developed by exploiting the polarization separation. In this paper, we propose an algorithm that assigns polarizations and frequencies within complexity of $O(N^2)$ based on the graph matching theory. We have verified that the proposed algorithm shows almost twice performance relative to the uni-polar frequency assignment algorithms and it approaches very closely to its theoretical optima.