DOI QR코드

DOI QR Code

Design and Fabrication of Dual Linear Polarization Stack Antenna for 4.7GHz Frequency Band

4.7 GHz 대역에서 동작하는 이중 선형편파 적층 안테나의 설계 및 제작

  • Joong-Han Yoon ;
  • Chan-Se Yu (Electronic Convergence Materials &Device Research Center, Korea Electronics Technology Institute)
  • 윤중한 (신라대학교 전기전자공학과) ;
  • 유찬세 (한국전자기술연구원)
  • Received : 2023.02.16
  • Accepted : 2023.04.17
  • Published : 2023.04.30

Abstract

In this paper, we propose DLP(Dual Linear Polarization) stack antenna for private network. The proposed antenna has general stack structure and design airgap between two substrate to obtain the maximum gain. Also, to improve cross polarization isolation, two feeding port is designed to separate for each substrate. The size of each patch antenna is 17.80 mm(W1)×16.70 mm(L1) for lower patch and 18.56 mm(W2)×18.73 mm(L2) for upper patch, which is designed on the FR-4 substrate which thickness (h) is 1.6 mm, and the dielectric constant is 4.3, and which is 40.0 mm(W)×40.0 mm(L) for total size of substrate. From the fabrication and measurement results, bandwidths of 100 MHz (4.74 to 4.84 GHz) for feeding port 1, and 150 MHz (4.67 to 4.82 GHz) for feeding port 2 are obtained on the basis of -10 dB return loss and transmission coefficient S21 is got under the -20 dB. Also, cross polarization isolation between each feeding port obtained

본 논문에서는 특화망에 적용 가능한 DLP(Dual Linear Polarization) 적층 안테나를 제안하였다. 제안된 안테나는 일반적인 적층구조를 갖고 최대이득을 얻을 수 있도록 공기 갭을 갖도록 설계하였다. 격리도를 개선하기 위해서 두 개의 급전포트를 각 층으로 분리하여 설계하였다. 각각 패치의 크기는 하위층, 17.80 mm×16.70 mm(W1×L1) 그리고 상위층 18.56 mm×18.73 mm(W2×L2)이며 적층 안테나의 전체 크기는 40.0 mm(W)×40.0 mm(L)이며, 모두 두께(h) 1.6 mm, 그리고 비유전율이 4.4인 FR-4 기판을 사용하였다. 제작 및 측정결과로부터, -10 dB 반사손실을 기준으로 입력포트 1에서 100.0 MHz (4.74~4.84 GHz), 입력포트 2에서 150.0 MHz (4.67~4.82 GHz)의 대역폭을 얻었으며 전달계수 S21은 -20 dB 이하의 값을 얻었다. 또한 각 급전포트에서의 편파분리도를 얻었다.

Keywords

Acknowledgement

본문은 산업통상자원부의 재원으로 한국산업기술관리평가원(KEIT)의 지원을 받아 수행된 연구결과 중 일부임. (소재부품기술개발사업-초고주파·저잡음·저손실 LTCC 필터, 액티브 안테나 및 이를 적용한 5G 특화망용 중계 모듈 개발, 과제번호 : 20022409).

References

  1. Y. Chen, "5G future mobile communication," The Proc. of the Korea Electromagnetic Engineering Society, vol. 25, no. 4, Apr. 2014, pp. 3-12.
  2. G. Kang, H. Lee, S. Park, W. Kang, and B. Kwon, "Current trends of 5G wireless technology," J. of Telecommunications Technology Association, vol. 163, Jan. 2016, pp. 51-57.
  3. KAIST, "Current trends and future perspectives of 5G network technology and industry," Issue paper, no. 19, Dec. 2020.
  4. S. Lee, "Current trends and future perspectives of private network," J. of Telecommunications Technology Association, vol. 194, Mar. 2021, pp. 18-25.
  5. D. Park, "5G vertical service and private network," J. of Telecommunications Technology Association, vol. 194, Mar. 2021, pp. 26-31.
  6. D. Min, Y. Shin, and J. Ahn, "Research on the trend in private 5G introduction in a foreign country," Electronics and telecommunications trend, vol. 35, no. 5, Oct. 2020, pp. 139-150.
  7. Korea Communications Agency, "5G private network guideline," Technical report, Oct. 2021.
  8. W. Ltutzman and G. Ahiele, Antenna Theory and Design 3rd. London : John Wiley & Sons Inc., 2012.
  9. G. Kim, O. Kim, and S. Rhee, "Design of L-shaped dual inset feeding microstrip stacked patch antenna," J. of the Korea Institute of Electronic Communication Sciences, vol. 14, no. 3, June 2019, pp. 461-466.
  10. T. Yun, "Broadband patch antenna for wireless LAN communication of 5 GHz band," J. of the Korea Institute of Electronic Communication Sciences, vol. 16, no. 3, June 2021, pp. 395-400.
  11. J. Lee, T. Oh, J. Ha, and Y. Lee, "Design of dual-polarization antenna with high cross-polarization discrimination," J. of the Korean Institute of Information, Electronics, Telecommunications and Technology Science, vol. 10, no. 3, Mar. 2017, pp. 199-205. https://doi.org/10.17661/jkiiect.2017.10.3.199
  12. J. Kim, H. Ryu, M. Chae, J. Kim, B. Park, and Y. Park, "Design and Fabrication of a dual linear polarization Sinuous antenna with improved cross polarization isolation," J. of Advanced Navigation Technology, vol. 22, no. 2, Apr. 2018, pp. 123-132.
  13. J. Kim and Y. Sung, "Dual-Band microstrip patch antenna with switchable orthogonal linear polarization," J. of Electromagnetic Engineering and Science, vol. 18, no. 4, Oct. 2018, pp. 215-220. https://doi.org/10.26866/jees.2018.18.4.215
  14. B. Tao, Y. He, G. Tang, C. Chang, and J. Ding, "Dual band and Dual ploarization microstrip antennas loaded with split ring Resonators," In Proc. Int. Symp. on Antenna and Propagation (ISAP), Busan, Korea, 2018, pp. 859-860.
  15. J. Yoon, "Design and Fabrication of DLP Array Antenna for 3.5 GHz Band," J. of the Korea Institute of Electronic Communication Sciences, vol. 16, no. 6, June 2021, pp. 1037-1044.
  16. V. Nguyen, P. Dzagbletey, and J. Chung, "Design of slotted patch antenna with dual linear polarization," In Proc. The Korean Institute of Electromagnetic Engineering and Science Summer Conf., Jeju, Korea, Aug. 2021, pp. 360.
  17. J. Yoon, "Design and Fabrication of Dual Linear Polarization Antenna for 28 GHz Band," J. of the Korea Institute of Electronic Communication Sciences, vol. 17, no. 1, Jan. 2022, pp. 13-22.