• Title/Summary/Keyword: 이중추력

Search Result 68, Processing Time 0.021 seconds

Development of the Dual-Thrust Rocket Motor (이중추력형 로켓 모터의 개발)

  • Lee, Do-Hyung;Yoon, Myong-Won;Hwang, Kab-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.9
    • /
    • pp.130-135
    • /
    • 2004
  • This paper describes the development of the dual-thrust rocket motor, which gets a significant change in thrust level by varying the burning area of the propellant grain. Reduced smoke propellant of low burning rate was formulated and the finocyl type grain was designed to get the boosting- and sustaining-phase of the thrust level. And the motor firing data were analyzed in detail. Developed motor was applied to the missile system to implement the successful flight test and this development helped to upgrade the performance of the missile system. The results will be usefully applied to the development of the similar rocket motors.

A study on the performance prediction technique of the dual-thrust rocket motor (이중 추력형 로켓모타의 성능예측 기법 연구)

  • 이도형
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.2
    • /
    • pp.38-43
    • /
    • 2001
  • In this study, the technique of the performance prediction on the finocyl-type dual-thrust rocket motor is developed, and the predicted data are compared with those of the static firing tests. The prediction is carried out with the separate calculations of the grain burning area and the performance of the rocket motor. When predicting the performance of the dual-thrust rocket motor, the different correction factors should be used at the boosting and sustaining phases. Otherwise, an error of prediction will follow. Reprediction using the separate correction factors shows good agreement with the test data within 0.5% error.

  • PDF

Performance Assessment of the Dual-Throat Nozzle Thrust Vector Control in a 3D Rectangular Nozzle (3D 직사각형 노즐에서 이중 스 로트 노즐 스러스트 벡터 제어의 성능 평가)

  • Wu, Kexin;Kim, Tae Ho;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.4
    • /
    • pp.12-24
    • /
    • 2020
  • The dual-throat nozzle is an extremely effective method in the thrust vectoring control field, utilizing another convergent section to connect with the divergent part of the conventional convergent-divergent nozzle. In the present research, the numerical simulation is conducted to investigate the effects of the injection angle on thrust vectoring performance in a 3D supersonic nozzle. Five injection angles are discussed and core performance variations are analyzed, including the deflection angle, injected mass flow ratio, system resultant thrust ratio, efficiency, Mach number contour and streamline on the symmetry plane, and Mach number contours at different slices. Meaningful conclusions are offered for fighter jet designers.

Development of the Dual Thrust Rocket Motor with Two Kinds Propellant (이종추진제를 적용한 이중추력 추진기관 개발)

  • Kim, Kyungmoo;Kim, Jeongeun;Lim, Jaeil;Park, Sunghan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.1
    • /
    • pp.58-67
    • /
    • 2021
  • This paper describes the development for the dual thrust rocket motor with two types of propellants with different combustion characteristics. We developed the composition of two kinds of propellant to be applied to a rocket motor, and improved a propellant charging process in a free grain type to improve the adhesion method and the problems of adhesion between different propellants. In addition, to meet the ignition phenomenon as a small rocket motor, the ignition delay was improved by applying a nozzle plug developed in a high density foam. The propulsion rocket motor reflecting this design and the improved manufacturing process was evaluated through a ground performance test.

A Study on the Supersonic Flow Characteristics Through a Dual Throat Nozzle (이중목 노즐에서 발생하는 초음속유동 특성에 관한 연구)

  • Shin, Choon-Sik;Kim, Heuy-Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.5
    • /
    • pp.1-7
    • /
    • 2010
  • Dual throat nozzle(DTN) is recently attracting much attention as a new concept of the thrust vectoring technique. This DTN is designed with two throats, an upstream minimum and a downstream minimum at the nozzle exit, with a cavity in between the upstream throat and exit. In the present study, a computational work has been carried out to analyze a fundamental performance of a dual throat nozzle(DTN) at various nozzle pressure ratios(NPR) and throat area ratios. Two-dimensional, axisymmetric, steady, compressible Navier-Stokes equations were solved using a fully implicit finite volume scheme. NPR was varied in the range of NPR from 2.0 to 10.0, at different throat area ratios. The present computational results were validated with some experimental data available. Based upon the present results, the performance of DTN is discussed in terms of the discharge coefficient and thrust efficiency.

Two-Dimensional Distribution of Spray Droplets Emanating from an Injector of Liquid-Propellant Thruster (액체추진제 추력기 인젝터 분무액적의 2차원 공간분포)

  • Jung, Hun;Kim, Jin-Seok;Kim, Jeong-Soo;Kim, Sung-Cho;Park, Jeong;Jang, Ki-Won;Su, Hyuk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.135-138
    • /
    • 2007
  • Two-dimensional distribution characteristics on the spray droplets emanating from an injector employed in a liquid-propellant thruster are investigated through dual-mode phase Doppler anemometry (DPDA). Spray-breakup characteristic parameters such as spray droplet velocity, turbulent intensity, Sauter mean diameter (SMD), number density, and volumetric flux are quantified to scrutinize the macroscopic behavior of injector-spray breakup. The present study will be able to contribute to the comprehension for performance features of the thruster in current use and to the design engineering of a brand-new thruster as well.

  • PDF

Study on Spray characteristics of Dual-Manifold Injector with Various Tangential Entries (이중 매니폴드 분사기에서 접선방향 유입구의 변화에 따른 분사특성 연구)

  • Lee, Ingyu;Jeong, Seokgyu;Yoon, Jungsoo;Park, Gujeong;Yoon, Youngbin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.10
    • /
    • pp.868-874
    • /
    • 2015
  • Thrust variation is an essential parameter in a space mission such as landing on an atmosphereless planet or docking a spacecraft. In order to achieve the thrust variation control, using throttleable injector is a representative and general method. A dual-manifold injector, one of throttleable injectors, was used to control mass flow rate. Five kinds of injectors were designed and investigated in order to compare the spray characteristics of the dual-manifold injector with various tangential entries. Spray angles and patterns were measured to determine external flow characteristics and film thicknesses were measured in order to investigate the internal flow patterns.

Design, Test and Evaluation on the PSD with Thermal Barrier Type for Subscale Dual Pulse Rocket Motor (격막형 PSD를 적용한 소형 추진기관 설계 및 시험평가)

  • Kim, Jinyong;Kwon, Taeha;Lee, Wonbok;Cho, Wonman;Lee, Bangeop;Yun, Namgyun;Rhee, Youngwoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.6
    • /
    • pp.82-87
    • /
    • 2014
  • Dual pulse rocket motor has a rocket motor with different pulse grains divided by a pulse separation device such as a fragile bulkhead or a thermal barrier type. It distributes thrust energy very effectively via pulse separation device to improve range and terminal velocity of a missile. This paper contains the thermal barrier design and experimental analysis through ground firing tests of small dual pulse motors. The results will be applied to the design, test and evaluation of the scale up dual pulse rocket motor.

The stydy on determination method of initial optimal nozzle expansion ratio in pintle solid rocket motor (핀틀 로켓의 초기 최적 노즐 팽창비 결정 방법 연구)

  • Kim, Joung-Keun;Lee, Young-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.8
    • /
    • pp.744-749
    • /
    • 2011
  • In this study, determination method of initial optimal nozzle expansion in pintle rocket was investigated. The initial optimal initial nozzle expansion was decided by maximizing the mass-averaged thrust coefficient that is calculated from thrust coefficient of minimum and maximum chamber pressure. The determination of initial optimal initial nozzle expansion was equivalent to that of the minimum propellant mass which was required for obtaining the desired mission performance. The highest pressure, thrust turndown ratio and total impulse ratio effected on the initial optimal nozzle expansion. Among them, total impulse ratio had great influence on the initial optimal nozzle expansion.

2차 유동 분사에 의한 추력 방향 제어(TVC)에 관한 2차원 및 3차원 유동해석

  • 오대환;구상모;손창현;이중원
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.04a
    • /
    • pp.15-15
    • /
    • 1999
  • 2차 유동 분사에 의한 추력 방향 제어 방법은 복잡한 기계적 작동장치와 이에 따른 무게의 증가를 배제할 수 있다. 본 연구에서는 유동 해석을 통하여 2차원 및 3차원 초음속 수축-팽창 노즐 유동에 2차 유동을 분사하여, 2차 유동의 분사 위치, 분사 유량 및 분사 각도 등이 추력의 방향 및 크기에 미치는 영향을 밝혀 추력 방향 제어를 위한 최적의 2차 분사 조건을 제시하였다. 유동 해석 결과 2차 유동의 분사 위치는 생성된 경가 충격파가 노즐 출구까지 분포되는 지점이 최대 전향각과 횡추력을 가지는 분사위치임을 알 수 있었고, 분사 각도는 주 유동의 역방향으로 분사하는 것이 수직방향으로 분사하는 것보다 더 큰 전향각을 얻을 수 있었다. 또한 2차원의 경우보다 3차원 유동에서 큰 전향각이 생김을 알 수 있었다.

  • PDF