• Title/Summary/Keyword: 이종훈

Search Result 1,475, Processing Time 0.032 seconds

Study on Correlation between Dynamic Cone Resistance and Shear Strength for Frozen Sand-Silt Mixtures under Low Confining Stress (낮은 구속응력에서 모래-실트 혼합토의 동결강도 평가를 위한 동적 콘 저항력 및 전단강도 상관성 연구)

  • Kim, Sangyeob;Lee, Jong-Sub;Hong, Seungseo;Byun, Yong-Hoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.1
    • /
    • pp.5-12
    • /
    • 2016
  • Investigation of in-situ ground in cold region is difficult due to low accessibility and environmental factors. In this study, correlation between dynamic cone resistance and shear strength is suggested to estimate the strength of frozen soils by using instrumented dynamic cone penetrometer. Tests were conducted in freezing chamber after preparing sand-silt mixture with 2.3% water content. Vertical stresses of 5 kPa and 10 kPa were applied during freezing, shearing, and penetration phase to compare the dynamic cone resistance and shear strength. The dynamic cone resistance, additionally, is calculated to minimize the effect of energy loss during hammer impact. Experimental results show that as the shear strength increases, the dynamic cone penetration index (DCPI) decreases nonlinearly, while the dynamic cone resistance increases linearly. This study provides the useful correlation to evaluate strength properties of the frozen soils from the dynamic cone penetration and direct shear tests.

Production of Bioactive Compounds from Fungi Grown on Ginseng-Steaming Effluent (인삼 유출액에서 생육한 곰팡이로부터 생리 활성 물질의 생산)

  • Jang, Jeong-Hoon;Kim, Jae-Ho;Kim, Na-Mi;Kim, Ha-Kun;Lee, Jong-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.2
    • /
    • pp.129-135
    • /
    • 2010
  • We described production of bioactive compounds from fungi grown on Korean ginseng-steaming effluents (GSE) for develop high-value added nutraceuticals from Korean GSE. Hansenula anomala KCCM 11473, which grew well in Korean GSE had high RNA content, and its optimal autolysis conditions were established to produce 5'-ribonucleotides (13.9~28.5 mg/g of biomass) at $55^{\circ}C$ and pH 5.0 for 24 h. 5'-Phosphodiesterase and adenyl deaminase were not effective in increasing the yield of 5'-ribinucleatides, but the yield of IMP increased significantly only after the addition of 1.0% adenyl deaminase. Saccharomyces cerevisiae showed the highest growth in the GSE medium. 267.1 mg of S. cerevisiae biomass was produced from 1 g of GSE solid and medicinal ginsenoside-$Rg_3$ contents was determined with 0.033 mg. Mucor miehei KCTC 6011 produced approximately 120 mg of chitosan per g-dry mycelium in 84 h at $25^{\circ}C$ when grown in the GSE (pH 8.0) supplemented with 0.5% yeast extract and 0.002% $CuSO_4$. Chitosan produced by M. miehei KCTC 6011 have deacetylated approximately 56% and its viscosity and molecular weight of the chitosan were 80 cps and $1.07\times10^3$ kDa, respectively. The chitosan at 1.5 mg/ml inhibited 73.9% of the mycelium growth of Rhizotonia solani in 60 h.

Evaluation of Silicon Carbide (SiC) for Deep Borehole Disposal Canister (심부시추공 처분용기 재료로서 SiC 세라믹의 적합성 평가)

  • LEE, Minsoo;LEE, Jongyoul;CHOI, Heuijoo;YOO, MalGoBalGaeBitNaLa;JI, Sunghoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.233-242
    • /
    • 2018
  • To overcome the low mechanical strength and corrosion behavior of a carbon steel canister at high temperature condition of a deep borehole, SiC ceramics were studied as an alternative material for the disposal canister. In this paper, a design concept for a SiC canister, along with an outer stainless steel container, was proposed, and its manufacturing feasibility was tested by fabricating several 1/3 scale canisters. The proposed canister can contain one PWR assembly. The outer container was also prepared for the string formation of SiC canisters. Thermal conductivity was measured for the SiC canister. The canister had a good thermal conductivity of above $70W{\cdot}m^{-1}{\cdot}K^{-1}$ at $100^{\circ}C$. The structural stability was checked under KURT environment, and it was found that the SiC ceramics did not exhibit any change for the 3 year corrosion test at $70^{\circ}C$. Therefore, it was concluded that SiC ceramics could be a good alternative to carbon steel in application to deep borehole disposal canisters.

Development of Novel Joint Device for a Disposal Canister in Deep Borehole Disposal (고준위폐기물 심부시추공 처분을 위한 처분용기 접속장치의 개발)

  • LEE, Minsoo;LEE, Jongyoul;JI, Sung-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.261-270
    • /
    • 2018
  • In this study, to replace the 'J-slot joint', a joint device between a disposal canister and an emplacement jig in Deep Borehole Disposal process, a novel joint device was designed and tested. The novel joint device was composed of a wedge on top of a disposal canister and a hook box at the end of a winch system. The designed joint device had merits in that it can recombine an emplaced canister freely without the replacement of the joint component. Moreover, it can be applied to various emplacement jigs such as drill pipes, wire-lines, and coiled tubing. To demonstrate the designed joint device, the joint device (${\Phi}110mm$, H 148 mm), a twin canister string (${\Phi}140mm$, H 1,105 mm), and a water tube (${\Phi}150mm$, H 1,500 mm) as a borehole model were manufactured at 1/3 scale. As deployment muds, Na-type bentonite (MX-80) and Ca-type (GJ II) bentonite muds were prepared at solid contents of 7wt% and 28wt%, respectively. The manufactured joint device showed good performance in pure water and viscous muds, with an operation speed of $10m{\cdot}min^{-1}$. It was concluded that the newly developed joint device can be used for the emplacement and retrieval of a deep disposal canister, below 3~5 km, in the future.

A Simulation Study on the Deadlock of a Rail-Based Container Transport System (레일기반 컨테이너 이송 시스템의 교착에 관한 시뮬레이션 연구)

  • Seo, Jeong-Hoon;Yi, Sang-Hyuk;Kim, Kap-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.42 no.1
    • /
    • pp.47-56
    • /
    • 2018
  • In this study, the focus is on the issue of whether a container terminal is facing the limitation of its productivity for serving mega-vessels with numerous containers. In order to enhance the terminal operations, a new conceptual design of the container handling system have been proposed. This research focuses on the rail-based container transport system and its operations. This system consists of rail-based shuttle cranes and rail-based transporters called flatcars. The deadlock problem for managing automated transporters in container terminals has been an important issue for a long measurement of time. Therefore, this study defines the deadlock situation and proposes its avoidance rules at the rail-based container transport system, which is required to handle numerous container throughput operations. The deadlock in the rail-based container transport system is classified into two parts: deadlock between cranes and flatcars; deadlock between flatcars. We developed the simulation model for use with characterizing and analyzing the rail-based container transport system. By running the simulation, we derived possible deadlock situations, and propose the several deadlock avoidance algorithms to provide results for these identified situations. In the simulation experiments, the performances of the deadlock avoidance algorithms are compared according to the frequency of deadlocks as noted in the simulations.

Screening of Yeast for Brewing of Korean Traditional Pear Yakju and Optimal Fermentation Condition (전통 배 약주 제조용 효모의 선발 및 배 약주의 최적 발효 조건)

  • Song, Jung-Hwa;Jang, Jeong-Hoon;Na, Kwang-Chul;Kim, Ha-Kun;Lee, Jong-Soo
    • The Korean Journal of Mycology
    • /
    • v.38 no.2
    • /
    • pp.184-188
    • /
    • 2010
  • The goal of this study was to screen a useful yeast for Korean traditional pear Yakju (KTPY) brewing and develop its brewing process. Cooked non-glutinous rice and nuruk were mixed, and added into pear juice with various Saccharomyces cerevisiae and then fermented at $25^{\circ}C$ for 7 days. Among several alcohol fermentation yeasts, ethanol contents was the highest in pear Yakju made by S. cerevisiae K-7 and also showed high ethanol content in pear Yakju which was made by commercial S. cerevisiae C-2. Therefore, we selected S. cerevisiae K-7 and S. cerevisiae C-2 as suitable yeasts for brewing of KTPY. Maximal ethanol production (10.4%) was obtained when cooked non-glutinous rice (100 g) and nuruk (30 sp/g) were mixed and added into pear juice (600 ml) with S. cerevisiae K-7 (5%) and fermented at $25^{\circ}C$ for 7 days and also its antihypertensive angiotensin I-converting enzyme (ACE) inhibitory activity was 57.2%. Addition of antihypertensive starchy materials into the mash was not affected in ACE inhibitory activity and total acceptability of KTPY.

Synthesis of Uniformly Doped Ge Nanowires with Carbon Sheath

  • Kim, Tae-Heon;;Choe, Sun-Hyeong;Seo, Yeong-Min;Lee, Jong-Cheol;Hwang, Dong-Hun;Kim, Dae-Won;Choe, Yun-Jeong;Hwang, Seong-U;Hwang, Dong-Mok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.289-289
    • /
    • 2013
  • While there are plenty of studies on synthesizing semiconducting germanium nanowires (Ge NWs) by vapor-liquid-solid (VLS) process, it is difficult to inject dopants into them with uniform dopants distribution due to vapor-solid (VS) deposition. In particular, as precursors and dopants such as germane ($GeH_4$), phosphine ($PH_3$) or diborane ($B_2H_6$) incorporate through sidewall of nanowire, it is hard to obtain the structural and electrical uniformity of Ge NWs. Moreover, the drastic tapered structure of Ge NWs is observed when it is synthesized at high temperature over $400^{\circ}C$ because of excessive VS deposition. In 2006, Emanuel Tutuc et al. demonstrated Ge NW pn junction using p-type shell as depleted layer. However, it could not be prevented from undesirable VS deposition and it still kept the tapered structures of Ge NWs as a result. Herein, we adopt $C_2H_2$ gas in order to passivate Ge NWs with carbon sheath, which makes the entire Ge NWs uniform at even higher temperature over $450^{\circ}C$. We can also synthesize non-tapered and uniformly doped Ge NWs, restricting incorporation of excess germanium on the surface. The Ge NWs with carbon sheath are grown via VLS process on a $Si/SiO_2$ substrate coated 2 nm Au film. Thin Au film is thermally evaporated on a $Si/SiO_2$ substrate. The NW is grown flowing $GeH_4$, HCl, $C_2H_2$ and PH3 for n-type, $B_2H_6$ for p-type at a total pressure of 15 Torr and temperatures of $480{\sim}500^{\circ}C$. Scanning electron microscopy (SEM) reveals clear surface of the Ge NWs synthesized at $500^{\circ}C$. Raman spectroscopy peaked at about ~300 $cm^{-1}$ indicates it is comprised of single crystalline germanium in the core of Ge NWs and it is proved to be covered by thin amorphous carbon by two peaks of 1330 $cm^{-1}$ (D-band) and 1590 $cm^{-1}$ (G-band). Furthermore, the electrical performances of Ge NWs doped with boron and phosphorus are measured by field effect transistor (FET) and they shows typical curves of p-type and n-type FET. It is expected to have general potentials for development of logic devices and solar cells using p-type and n-type Ge NWs with carbon sheath.

  • PDF

Runoff Simulation of An Urban Drainage System Using Radar Rainfall Data (레이더 강우 자료를 이용한 도시유역의 유출 모의)

  • Kang, Na Rae;Noh, Hui Seung;Lee, Jong So;Lim, Sang Hun;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.15 no.3
    • /
    • pp.413-422
    • /
    • 2013
  • In recent, the rainfall is showing different properties in space and time but the ground rain gauge only can observe rainfall at a point. This means the ground rain gauge has the limitations in spatial and temporal resolutions to measure rainfall and so there is a need to utilize radar rainfall which can consider spatial distribution of rainfall This study tried to apply radar rainfall for runoff simulation on an urban drainage system. The study area is Guro-gu, Seoul and we divided study area into subbasins based on rain gauge network of AWS(Automatic Weather station). Then the radar rainfalls were adjusted using rainfall data of rain gauge stations the areal rainfalls were obtained. The runoffs were simulated by using XP-SWMM model in subbasins of an urban drainage system. As the results, the adjusted radar rainfalls were underestimated in the range of 60 to 95% of rain gauge rainfalls and so the simulated runoffs from the adjusted radar and gauge rainfalls also showed the differences. The runoff peak time from radar rainfall was occurred more fast than that from gauge rainfall.

Optimization of Crack-Free Polytypoidally Joined Dissimilar Ceramics of Functionally Graded Material (FGM) Using 3-Dimensional Modeling (폴리타이포이드 경사 방식으로 접합 된 이종 세라믹간의 적층 수의 최적화 및 잔류응력 해석에 대한 연구)

  • Ryu, Sae-Hee;Park, Jong-Ha;Lee, Sun-Yong;Lee, Jae-Sung;Lee, Jae-Chul;Ahn, Sung-Hoon;Kim, Dae-Keun;Chae, Jae-Hong;Riu, Do-Hyung
    • Korean Journal of Materials Research
    • /
    • v.18 no.10
    • /
    • pp.547-551
    • /
    • 2008
  • Crack-free joining of $Si_3N_4\;and\;Al_2O_3$ using 15 layers has been achieved by a unique approach introducing Sialon polytypoids as a functionally graded materials (FGMs) bonding layer. In the past, hot press sintering of multilayered FGMs with 20 layers of thickness $500{\mu}m$ each has been fabricated successfully. In this study, the number of layers for FGM was reduced to 15 layers from 20 layers for optimization. For fabrication, model was hot pressed at 38 MPa while heating up to $1700^{\circ}$, and it was cooled at $2^{\circ}$/min to minimize residual stress during sintering. Initially, FGM with 15 layers had cracks near 90 wt.% 12H / 10 wt.% $Al_2O_3$ and 90 wt.% 12H/10 wt.% $Si_3N_4$ layers. To solve this problem, FEM (finite element method) program based on the maximum tensile stress theory was applied to design optimized FGM layers of crack free joint. The sample is 3-dimensional cylindrical shape where this has been transformed to 2-dimensional axisymmetric mode. Based on the simulation, crack-free FGM sample was obtained by designing axial, hoop and radial stresses less than tensile strength values across all the layers of FGM. Therefore, we were able to predict and prevent the damage by calculating its thermal stress using its elastic modulus and coefficient of thermal expansion. Such analyses are especially useful for FGM samples where the residual stresses are very difficult to measure experimentally.

Mechanical Properties of The CO2 Free Vacuum Carburized in SCM415H (CO2 무 배출 침탄 열처리된 SCM415H 소재의 기계적 성질)

  • Byun, Jae-Hyuk;Ro, Seung-Hoon;Lee, Jong-Hyung;Lee, Chang-Hun;Yang, Seong-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.971-978
    • /
    • 2012
  • Vacuum carburizing is supposed to be the superior process to the gas carburizing. However, the vacuum carburizing has the stage in which hydrocarbon gas is supplied into the furnace to be pyrolysis, and consequently the stable heat treatment is hard to achieve due to the soot from the hydrocarbon pyrolysis. Recently, many studies have been made which utilize acetylene gas to overcome this defects. In this paper, the carburizing and the diffusion periods have been selected based on the Harris experimental formula, and the mechanical properties of the vacuum carburized specimen have been compared with those of the gas carburized SCM415H specimen to identify the feasibility of the $CO_2$ free vacuum carburizing process. The result showed that the vacuum carburized materials used have no oxidization of the grain boundaries, and show the 29.8% higher effective hardness depth and the acceptable tensile strength.