• Title/Summary/Keyword: 이종금속용접

Search Result 153, Processing Time 0.029 seconds

Microstructures and Hardness of DISK Laser Welds in Al-Si Coated Boron Steel and Zn Coated DP Steel (Al-Si Coated Boron Steel과 Zn Coated DP Steel 이종금속의 DISK Laser 용접부 미세조직과 경도)

  • An, Yong-Gyu;Kang, Chung-Yun;Kim, Young-Su;Kim, Cheol-Hee;Han, Tae-Kyo
    • Journal of Welding and Joining
    • /
    • v.29 no.1
    • /
    • pp.90-98
    • /
    • 2011
  • Al-Si coated Boron steel and Zn coated DP steel were welded using DISK laser and the microstructure and hardness of the weld were investigated. Full penetration was obtained, when the welding speed was lower than 4m/min. In the specimen welded with laser power of 3 kW and welding speed of 2 m/min, the hardness was the highest in the heat affect zone in the boron steel (HAZ-B) and that of the heat affect zone in the DP steel (HAZ-D) was lower than HAZ-B. The hardness of fusion zone was in between those of HAZ-B and HAZ-D. The decreased hardness from each HAZ to base metal(BM) could be explained that ferrite contents increases when access to the BM. The variation of hardness in the welds could be explained by the difference of microstructure, that is, full martensite in HAZ-B, mixture of martensite and bainite in the fusion zone, and the mixture of martensite, ferrite and bainite in HAZ-D.

Characteristics of Electric Resistance Heated Surface Friction Spot Welding Process of Copper and Aluminum Dissimilar Metal Sheets (구리와 알루미늄 이종금속 판재간의 전기저항가열 표면마찰 스폿용접 특성)

  • Sun, Xiao-Guang;Jin, In-Tai
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.99-109
    • /
    • 2022
  • In this study, an electric resistance-heated surface friction spot-welding process was proposed and tested for the spot-welding ability of copper and aluminum dissimilar metal sheets using electric resistance heating and surface friction heating. This process has welding variables, such as the current value, energizing cycles, rotational speed, and friction time. The current value and energizing cycle can affect the resistance heat, and the rotational speed of the rotating pin and friction time influence frictional heat generation. Resistance heating before friction heating has a preheating effect on the Cu-Al contact interface and a positive effect on preventing friction heat loss during the friction stage. However, because resistance preheating can soften the copper sheet and affect the contact stress and friction coefficient, it has difficulties that may adversely affect frictional heat generation. Therefore, the optimal combination of welding variables should be determined through simulations and experiments of the spot-welding process to determine the effects of electric resistance preheating on the suggested process. Through this procedure, it is known that the proposed spot-welding process can improve the welding quality during the spot welding of Cu-Al sheets.

The Study of Laser Weldability of two different Metal, Carbon Steel and Sintered Materials, Depends on the Sintered Density (소결밀도에 따른 분말 소결금속과 탄소강의 이종금속 레이저 용접성 고찰)

  • Kim, Yong;Yang, Hyun-Seok;Park, Ki-Young;Lee, Kyoung-Don
    • Laser Solutions
    • /
    • v.11 no.2
    • /
    • pp.8-14
    • /
    • 2008
  • Sintered specimen which used for a blade of diamond tool was manufactured in order to verify $CO_2$ laser weldability depend on sintered temperature. Five kind of specimen were prepared and the range of temperature is from $600^{\circ}C$ to $1000^{\circ}C$ at intervals of $100^{\circ}C$. As a result of the sintered density test, the porosity rate appeared in the range of $2.1%{\sim}21.4%$. After welding, the most segments had exceeds the minimum fracture stress (600MPa, The Standard Safety of Europe) at the welding strength test except on the sintered at $600^{\circ}C$. In case of the sintered at $700^{\circ}C$, even satisfied the safety allowable stress but cannot get the good quality for bead appearance because of humping defect. In the conclusion, we could know that it showed not only relatively soundness bead but also enough welding strength when the sintered blade of diamond tool is included less than 4% of porosity rate.

  • PDF

Field Application of Phased Array Ultrasonic Testing for Structural Weld Overlay on Dissimilar Welds of Pressurizer Nozzles (가압기 노즐 이종금속 용접부의 구조적 오버레이 용접부에 대한 위상배열 초음파기법의 현장 적용)

  • Kim, Jin-Hoi;Kim, Yongsik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.4
    • /
    • pp.268-274
    • /
    • 2015
  • Weld overlay was first used in power plants in the US in the early 1980s as an interim method of repairing the welds of flawed piping joints. Weld overlaid piping joints in nuclear power plants must be examined periodically using ultrasonic examination technology. Portable phased array ultrasonic technology has recently become available. Currently, the application of preemptive weld overlays as a mitigation technique and/as a method to improve the examination surface condition for more complex configurations is becoming more common. These complex geometries may require several focused conventional transducers for adequate inspection of the overlay, the original weld, and the base material. Alternatively, Phased array ultrasonic probes can be used to generate several inspection angles simultaneously at various focal depths to provide better and faster coverage than that possible by conventional methods. Thus, this technology can increase the speed of examinations, save costs, and reduce radiation exposure. In this paper, we explain the general sequence of the inspection of weld overlay and the results of signal analysis for some PAUT (phased array ultrasonic testing) signals detected in on-site inspections.

Rapid Product Fabrication using Wire Welding with $CO_2$ Laser Irradiation and Milling Process Technology (레이저 용접공정과 밀링공정에 의한 쾌속 금속 시작품 제작)

  • 최두선;신보성;윤경구;황경현;박진용;이종현;송용억;박세형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.763-766
    • /
    • 2000
  • The Rapid Prototyping and Tooling technology has been developed. However, most commercial ones currently use resins or waxes as the raw materials. These days. the direct metal deposition methods are researched as a true rapid prototyping and tooling technology. A fundamental study on rapid prototyping and tooling with wire welding technology using $CO_2$ laser radiation was carried out in this paper. The main focus is to develop a simple commercial rapid prototyping and tooling system with the exiting laser welding technology. The process is investigated as a function of laser parameters and process variables. Basic parts were fabricated as out-put and their microstructure, hardness and tensile strength are examined for the reliability. In addition, Its advantages and disadvantages are discussed as a rapid prototyping and tooling system.

  • PDF

Brazing Technilogy and Trend in Japan(I) -Aluminum Beazing- (일본의 브레이징 기술과 동향 (1) -알루미늄 브레이징-)

  • 정재필;강춘식;박영조;황선효
    • Journal of Welding and Joining
    • /
    • v.12 no.4
    • /
    • pp.50-62
    • /
    • 1994
  • 브래이징은 모재보다 용점이 낮은 재료를 접합매체(납재)로 하여, 450.deg. C 이상의 온도에서 모재를 녹이지 않고 납재만 용융시켜, 모재의 틈새에 용융된 납재를 침투(모세관 유입) 시킴 으로써 접합하는 방법이다. 브레이징은 (1) 한 번에 여러 곳을 접합할 수 있어 대량생산이 용이 하고, (2) 이종금속의 접합이 용이하며, (3) 복잡한 면의 접합이 가능하고, (4) 박판 및 세선의 접합이 용이하며, (5) 기밀, 수밀에 강하고 접합 강도가 우수하다는 장점으로 인해 적용범위가 점차 확대되고 있다. 국내에서도 현재 수많은 업체에서 브레이징을 제품생산에 적용하고 있으나 브레이징 기술은 그리 높지 않은 상태이다. 그러나 최근 브레이징 분야에 대한 기술개발 욕구가 증대되고 있는 상황이어서, 브레이징에 대한 기술과 정보의 보급 필요성이 대두되고 있다. 이에 필자는 일본의 브레이징 자료를 중심으로 브레이징에 관한 기초 지식을 기술하고 덧붙여 연구 동향을 소개하고자 한다.

  • PDF

Joining of Zinc Coated Steel and Aluminum Alloy for Car Body (자동차용 아연 도금 강판과 알루미늄 합금의 접합)

  • Lee, Woo-Ram;Lee, Jung-Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.145-150
    • /
    • 2011
  • There is problem to reduce the car body weight for improving fuel consumption and $CO_2$ generation. As one of the solution, the multi material car body concept using aluminum alloys and high strength steels is proposed recently. Therefore, new welding processes by which these dissimilar material can be joined in high reliability and productivity are demanded. Laser spot welding was developed for joining of dissimilar metals. In the present work, Laser spot welding of zinc coated steel and aluminum alloy was investigated, and the process parameters were studied. Otherwise, the influences of process parameters on the weldability, the formation of intermetallic compound layer and the mechanical properties have been investigated. When intermetallic compound layer thickness was more than 1mm, specimen was failure in the interface.

Analysis of Carbon Migration with Post Weld Heat Treatment in Dissimilar Metal Weld. (이종금속 피복용접부의 후열처리에 따른 탄소이동 해석)

  • Kim, Byeong-Cheol;Ann, Hui-Seong;Kim, Seon-Jin;Song, Jin-Tae
    • Korean Journal of Materials Research
    • /
    • v.1 no.1
    • /
    • pp.29-36
    • /
    • 1991
  • Pressurized Water Reactor (PWR) pressure vessels are made of forged low alloy steel plates internally clad with an austenitic stainless steel by welding to improve anti-corrosion properties. They display a characteristic behavior of dissimilar metal weld interface during post weld heat treatment (PWHT) and service at high temperature and pressure. In this Study, Metallugical structure of weld interface of SA 508 Class 3 forged steel clad with 309L, Austenitic stainless steel after PWHT was investigated. To estimate the width of the carburized/decarburized bands quantitatively, a model for carbon diffusion was proposed and a theoretical equation was derived.

  • PDF

A Study on the Mechanical Properties of Submerged Arc-Welded Zone between Different Kinds of Metal (서브머지드 아크 용접(熔接)에 의한 이종금속(異種金屬) 접합부의 기계적(機械的) 성질(性質)에 관한 연구)

  • Kang, Jai Won;Kim, Hyung Jong
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.209-216
    • /
    • 1998
  • Some mechanical properties of the submerged arc-welded(SAW) zone between different kinds of metal (SS400+SB450) are investigated and compared with that between same kinds of metal (SS400+SS400 and SB450+SB450). The analysis of the chemical components and observation of the micro-structure by SEM of the weld zone are also carried out. And the effect of the stress relief annealing is examined by comparing tensile strength, elongation, toughness add hardness of SAW specimens before and after the heat treatment.

  • PDF

A Study of Weld Fusion Zone Phenomena in Austenitic Stainless Steels(2) - Effects of Nitrogen on Microstructural Evolution and Hot Cracking Susceptibility GTA Welds in STS 304 - (오스테나이트계 스테인리스강 용접부의 금속학적 현상에 관한 연구(2) - STS 304 용접부 조직특성 및 고온균열 감수성에 미치는 질소의 영향 -)

  • 이종섭;김숙환
    • Journal of Welding and Joining
    • /
    • v.18 no.1
    • /
    • pp.59-69
    • /
    • 2000
  • The purpose of the present study was to investigate weld metallurgical phenomena such as primary solidification mode, microstructural evolution and hot cracking susceptibility in nitrogen-bearing austenitic stainless steel GTA welds. Eight experimental heats varying nitrogen content from 0.007 to 0.23 wt.% were used in this study. Autogenous GTA welding was performed on weld coupons and the primary solidification mode and their microstructural characteristics were investigated from the fusion welds. Varestraint test was employed to evaluate the solidification cracking susceptibility of the heats and TCL(Total Crack Length) was used as cracking susceptibility index. The solidification mode shifted from primary ferrite to primary austenite with an increase in nitrogen content. Retained delta ferrite exhibited a variety of morphology as nitrogen content varied. The weld fusion zone exhibited duplex structure(austenite+ferrite) at nitrogen contents less than 0.10 wt.% but fully austenitic structure at nitrogen contents more than 0.20 wt.%. The weld fusion zone in alloys with about 0.15 wt.% nitrogen experienced primary austenite + primary ferrite solidification (mode AF) and contained delta ferrite less than 1% at room temperature. Regarding to solidification cracking susceptibility, the welds with fully austenitic structure exhibited high cracking susceptibility while those with duplex structure low susceptibility. The cracking susceptibility increased slowly with an increase in nitrogen content up to 0.20 wt.% but sharply as nitrogen content exceeded 0.20 wt.%, which was attributed to solidification mode shift fro primary ferrite to primary austenite single phase solidification.

  • PDF