• Title/Summary/Keyword: 이의 강성

Search Result 3,258, Processing Time 0.032 seconds

Static Analysis of Frame Structures Using Transfer of Stiffness Coefficient (강성계수의 전달을 이용한 골조구조물의 정적해석)

  • 최명수;문덕홍;정하용
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.9-18
    • /
    • 2003
  • In static analysis of a variety of structures, the matrix method of structural analysis is the most widely used and powerful analysis method. However, this method has drawback requiring high-performance computers with many memory units and fast processing units in the case of analyzing accurately structures with a large number of degrees-of- freedom. Therefore, it's very difficult to analyze these structures accurately in personal computers. For overcoming the drawback of the matrix method of structural analysis, authors suggest the transfer stiffness coefficient method(TSCM). The TSCM is very suitable to a personal computer because the concept of the TSCM is based on the transfer of the stiffness coefficient for an analytical structure. In this paper, the static analysis algorithm for frame structures is formulated by the TSCM. We confirm the validity of the TSCM through the comparison of computation results by the TSCM, the NASTRAN, the matrix method of structural analysis and the analytical solution.

Optimal Vertical Stiffness of Fastener of Concrete Track in High-Speed Railway (고속철도 콘크리트궤도 체결구 최적 수직강성)

  • Yang, Sin-Chu
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.1
    • /
    • pp.43-52
    • /
    • 2015
  • In this study, to minimize both the costs associated with track maintenance and the energy consumption for train operation, a numerical method that evaluates the optimal vertical stiffness of a fastener for concrete track is presented. A progress model of the track damage is established in order to calculate the concrete track maintenance cost according to the fastener stiffness. Also, the quantitative relationship between the progress of the track damage and the maintenance of the concrete track is derived. The wheel load is more exactly evaluated by using the advanced vehicle-track interaction model, which can precisely consider the behaviors of the track components. An optimal range for the stiffness of the fastener, a range that is applicable to the design of concrete track for domestic high speed lines, is proposed.

New Nonlinear Analysis Algorithm Using Equivalent Load for Stiffness (강성등가하중을 이용한 새로운 비선형해석 알고리즘)

  • Kim, Yeong-Min;Kim, Chee-Kyeong;Kim, Tae-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.731-742
    • /
    • 2007
  • This paper presents a new nonlinear analysis algorithm, that is, adaptive Newton-Raphson iteration method, The presented algorithm is based on the existing Newton-Raphson method, and the concept of it can be summarized as calculating the equivalent load for stiffness(ELS) and adapting this to the initial global stiffness matrix which has already been calculated and saved in initial analysis and finally calculating the correction displacements for the nonlinear analysis, The key characteristics of the proposed algorithm is that it calculates the inverse matrix of the global stiffness matrix only once irresponsive of the number of load steps. The efficiency of the proposed algorithm depends on the ratio of the active Dofs - the Dofs which are directly connected to the members of which the element stiffness are changed - to the total Dofs, and based on this ratio by using the proposed algorithm as a complementary method to the existing algorithm the efficiency of the nonlinear analysis can be improved dramatically.

Stiffness Analysis of External Fixation System with System Configuration Parameters (시스템 구성 인자를 고려한 외고정장치 시스템의 강성 해석)

  • Kim Yoon Hyuk;Lee Hyun Keun
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.531-536
    • /
    • 2004
  • In fracture treatment with external fixators, the inter-fragmentary movements at the fracture site affect the fracture healing process, and these movements are highly related to the stiffness of external fixation systems. Therefore, in order to provide the optimal fracture healing at the fracture site, it is essential to understand the relationship between the stiffness and the system configurations in external fixation system. In this study we investigated the influences of system configuration parameters on the stiffness in the finite element analysis of an external fixation system of a long bone. The system alignment, the geometric and the material non-linearity of the pin, the joint stiffness and the callus formation were considered in the finite element model. In the first, the system stiffness of the developed finite element model was compared with the experiment data for model validation. The consideration of the joint stiffness and nonlinearity of the model improved the system stiffness results. The joint stiffness, the non-alignment of the system decreased the system stiffness while the callus formation increased the system stiffness. The present results provided the biomechanical basis of rational guidelines for design improvements of external fixators and pre-op. planning to maximize the system stiffness in fracture surgery.

End-Shape Effect for Stress Concentration Reduction of Composite Single-Lap Bonded Joint (끝단형상에 따른 복합소재 단일겹치기 체결부의 응력집중 저감에 관한 연구)

  • Kim, Jung-Seok;Hwang, Jae-Yeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.3
    • /
    • pp.333-340
    • /
    • 2011
  • We evaluated the stress-reduction effect for different shapes of a composite adherend with or without a spew fillet. Six different single-lap joint specimens were modeled and assessed using nonlinear finite element analysis. Moreover, we investigated the effect of the stiffness ratio of the adherend and adhesive. The single-lap joint with normal tapering had the highest stress values, and the single-lap joint with reverse tapering and a spew fillet had the lowest stress values. The composite adherends with higher stiffness had lower stress values, and the adhesives with lower stiffness had lower stress values.

Investigation on Failure Behavior of Varying Ratios of Recycled Aggregate (순환골재 치환률에 따른 압축강도 비교분석)

  • Jang, Hoon;Chung, Wonseok;An, Zu-Og
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.160-160
    • /
    • 2011
  • 현대의 건설기술은 자원절약과 환경보전이라는 시대적 흐름 속에, 자원순환과 지속 가능한 친환경 건설기술 개발은 차세대 연구분야로써, 연구가 시급한 분야가 되었다. 최근에는 골재 수급불균형 문제를 해결하고 동시에 자원순환을 위한 방안으로서 건설폐기물로부터 생산된 순환골재를 콘크리트용 천연골재의 대체재로 활용하기 위한 연구개발이 이루어지고 있다. 지속가능형 건설기술을 국내 독자 기술로 확립하고 건설현장에서 발생하는 폐기물의 순환시스템을 확고하게 구축하여 순환자원에 의한 국가경쟁력 강화를 기대할 수 있다. 본 연구의 목적은 순환골재 콘크리트의 역학적 특성을 개선하기 위해 순환골재 콘크리트 공시체를 제작하여 강도 및 강성을 검증하는 것이다. 실험방법으로 순환굵은골재의 치환 비율을 0%에서 100%까지 변화시킨 공시체를 제작하고 각 공시체의 정적 극한강도 거동을 비교 분석하였다. 하중은 공시체가 파괴가 발생 할 때까지 변위제어 방식으로 재하 하였으며 이 때 공시체의 파괴거동은 설치된 계측센서들을 이용하여 계측 및 분석하였다. 실험결과 공시체의 압축강도는 순환굵은골재 치환률이 25% 미만일 경우 일반 콘크리트 압축강도의 95% 이상의 구조성능을 갖지만, 순환굵은골재 치환률이 100%인 경우, 일반콘크리트 압축강도의 85% 수준의 구조성능을 나타냈다. 강성은 FRP 부재의 순환골재 치환률에 따라 최대 14%의 강성차이를 보였다. 이를 통해 순환골재 치환률이 높을수록 순환골재 표면의 폐모르타르와 이물질의 영향으로 재료간의 부착강도가 감소되어 강도와 강성이 저하되었음을 확인하였다.

  • PDF

Application of Artificial Neural Network Reliable to Estimation Rigidity Index of Korean Soft Clay (국내 연약지반의 신뢰성 있는 강성지수 추정을 위한 인공신경망 이론의 적용)

  • Kim, Young Uk;Kim, Young Sang;Goo, Nam Sil;Park, Ji Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6C
    • /
    • pp.421-429
    • /
    • 2006
  • This study was undertaken to develop an analysis model representing a reliable estimation of rigidity of Korean soft clay using an artificial neural network (ANN). Data for the model development were obtained through a laboratory study, and were used for training and verification. The coefficient of correlation between the measured and predicted data using the developed model was relatively high. It demonstrates the potential application of ANN for the reliable estimation of Korean soft clay rigidity while past attempts at building such a mathematical model have proved difficult.

A Experimental Study on the Bearing Strength and Stiffness of Concrete Under Dowel Bars (장부 철근하부의 지압강도 및 지압강성에 관한 연구)

  • 김규선;최기봉;이리형
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.3
    • /
    • pp.215-220
    • /
    • 1994
  • Results of an experimental investigation on the bearing strength and stiffness of concrete under dowel bars are summarized. The effects of concrete strength bar diameter, and location of the bar on concrete were studied. Based on test results, empirical equations are proposed to predict the, concrete bearing strength and stiffness under reinforcing bars. Cornparisions of analytical arid experimental results are presented.

Quantitative Analysis on Effective Stiffness of Horizontal Joints in Precast Concrete Large Panel Structures (P.C. 대형판 구조물의 수평접합부 유효강성에 대한 정량적 분석)

  • 이한선;장극관;신영식
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.3
    • /
    • pp.142-151
    • /
    • 1994
  • Though stiffnesses of joints in precast concrete(P.C.) large panel structures are known to be generally less than those in monolithic reinforced concrete wall structures, designers have very little information on the quantitative values with regards to these stiffnesses. The aim of this paper is to provide this quantitative information, in particular, on the compressive stiffness of horizontal joints, based on the analytical results derived from several experiments. Also, it is shown that the approach from the contact problem to determine this stiffness gives a value very simlar to those obtained above.

Model and Method for Post-Failure Analysis of Composite Structure (복합재 구조물의 초기파손후의 거동묘사를 위한 모델과 해석방법)

  • 김용완;황창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.3
    • /
    • pp.506-513
    • /
    • 1992
  • 본 연구에서는 복합재 구조물에 대하여 유한요소해석법에 현상학적 모델인 전 단지연해석을 도입하여 강성저하와 모재파손을 예측하고 변형률을 매개변수로 한 Wei- bull 함수를 섬유파손해석에 도입하여 초기파손후의 거동을 묘사하고자 한다. 그리 고 면내전단하중이 작용하는 경우에 대해 전단지연해석을 수행할 수 있도록 모델링을 확장했다. 모재균열의 존재로 인한 단층의 강성변화는 실험으로 측정이 불가능하므 로 유한요소해석을 수행하여 비교하였다. 이 모델로부터 전단강성의 저하를 평가하 는 방법을 사용하였으며, 모재파손의 밀도 예측도 평균변형률 개념으로 전단효과를 고 려할 수 있도록 수정하였다. 그리고 초기파손후의 거동을 점진적으로 해석하기 위해 비선형 유한요소프그램을 작성하고, 상기의 모델을 도입하여 초기파손후의 거동을 보 다 정확히 묘사할 수 있는 방법을 제시하고 예로서 평시편에 대해 해석하고 실험치 및 타방법의 결과와 비교하였다.