• 제목/요약/키워드: 이원분류기법

검색결과 35건 처리시간 0.019초

사용자 로그 스트림 클러스터링에 의한 실시간 침입탐지 기법 (Anomaly Intrusion Detection by Clustering Transactional Audit Streams in a Host Computer)

  • 박남훈;오상현;이원석
    • 한국IT서비스학회:학술대회논문집
    • /
    • 한국IT서비스학회 2008년도 춘계학술대회
    • /
    • pp.594-599
    • /
    • 2008
  • 침입탐지에 있어서 사용자 로그 분석은 중요한 주제로서, 기존의 연구들에서 클러스터링 기법들을 사용하여 저장된 사용자 로그들을 분석해왔다. 하지만, 이러한 방법은 고정된 사용자 패턴 분석에는 효율적이지만, 로그 스트림과 같이 무한히 생성되어 사용자 패턴이 변화하는 경우 변화하는 패턴을 분석할 수 없다. 본 연구에서는 무한히 생성되는 사용자 로그 스트림을 대상으로 실시간 침입탐지 방법을 제시한다. 사용자로그의 정보는 사용자 행동에 대한 특성값으로 표현되어, 이러한 특성값들에 대해 실시간 데이터 스트림 클러스터링을 수행하여 이들을 클러스터로 분류한다. 각 클러스터는 사용자의 정상로그에 대한 특성값을 반영하게 되며, 그 결과 과거 사용자 로그에 대한 저장없이 새로운 로그 스트림을 지속적으로 분석할 수 있다. 결과적으로 사용자의 비정상행동을 실시간으로 탐지할 수 있으며, 이를 실험을 통해 평가하였다.

  • PDF

이기종 데이터 간 상호운용적 분류체계 관리를 위한 분류체계 자동화 방안 (The Automatic Management of Classification Scheme with Interoperability on Heterogeneous Data)

  • 이원구;황명권;이민호;신성호;김광영;윤화묵;성원경;정도헌
    • 한국정보통신학회논문지
    • /
    • 제15권12호
    • /
    • pp.2609-2618
    • /
    • 2011
  • 과학기술의 융 복합현상은 21세기 지식 기반 경제하에서 더욱 활발하게 진행됨에 따라 과학기술 분야를 적절히 분류해내고, 미래의 신성장 분야까지 포용할 수 있는 체계를 만드는 것이 결코 쉽지 않다. 특히, 이기종 도메인간 상호운용성 확보는 정보표준화, 정보서비스 분야와 같이 복잡하고 다양하게 구성된 시스템과 콘텐츠를 운영하는 영역에서 매우 중요한 사항이다. 이에, 본 연구에서는 각 콘텐츠 관리 서비스 기관이 분류체계 간 상호운용성을 갖을 수 있도록 분류체계를 유연적으로 수용 확장하기 위한 시스템적 해결방안을 제시하고자 한다. 특히 두 개 이상의 상이한 학술정보 자원의 주제분류간에 자동화된 매칭기법을 적용하여 상호운용을 가능케 하는 방법을 제시하였다.

연관규칙을 이용한 뉴스기사의 계층적 자동분류기법 (Hierarchical Automatic Classification of News Articles based on Association Rules)

  • 주길홍;신은영;이주일;이원석
    • 한국멀티미디어학회논문지
    • /
    • 제14권6호
    • /
    • pp.730-741
    • /
    • 2011
  • 인터넷과 컴퓨터 기술이 발전함에 따라 정보의 양이 폭발적으로 증가하였으며 사용자의 다양한 요구가 생겨나게 되었다. 이로 인해 대용량의 문서를 효과적으로 분류하기 위한 다양한 방법의 연구가 필요하게 되었다. 기존의 문서 범주화는 분서의 분류를 위해 연관된 문서의 키워드를 중심으로 하는 방법을 사용하였다. 그러나 본 논문에서는 연관규칙을 이용하여 범주 내의 문서들 간에 연관성 있는 키워드들의 집합을 추출하고 각 범주 별로 의미적으로 대표성을 가진 키워드들로 분류 규칙을 생성한다. 또한 효율적인 키워드 생성을 위한 데이터 전처리 방안을 제시하고, 새로운 문서 범주를 예측한다. 프로파일의 분류성능을 높이기 위한 분류함수를 설계하고 실험을 통하여 성능을 측정한다. 마지막으로 평면적인 범주 구조에서 확장하여 계층적인 분류체계 구조에서도 적용할 수 있는 자동분류 방안을 제시한다.

사용자 행위 클러스터링을 활용한 비정상 행위 탐지 (Anomaly Detection based on Clustering User's Behaviors)

  • 오상현;이원석
    • 한국정보처리학회논문지
    • /
    • 제7권8호
    • /
    • pp.2411-2420
    • /
    • 2000
  • 컴퓨터를 통한 침입을 효과적으로 탐지하기 위해서 많은 연구들이 오용탐지 기법을 개발하였다. 최근에는 오용 탐지 기법을 개선하기 위해서 비정상행위 탐지 기법에 관련된 연구들이 진행중이다. 이 논문에서는 비정상행위 탐지에서 사용자의 정상행위 패턴을 생성하기 위해 지지율에 기반한 새로운 클러스터링 알고리즘을 제시한다. 제시된 알고리즘에서는 사용자의 과거행위보다 최근행위에 보다 많은 비중을 두는 방법을 적용하였다. 한편, 사용자의 행위를 다양한 각도에서 분석될 수 있도록 사용자의 행위를 여러 판정요소로 분류하고 각 판정요소에 제시된 알고리즘을 이용하여 사용자의 정상행위 패턴을 생성한다. 결과적으로 사용자의 비정상행위가 효과적으로 탐지될 수 있다.

  • PDF

딥러닝 기술을 활용한 차별 및 혐오 표현 탐지 : 어텐션 기반 다중 채널 CNN 모델링 (Bias & Hate Speech Detection Using Deep Learning: Multi-channel CNN Modeling with Attention)

  • 이원석;이현상
    • 한국정보통신학회논문지
    • /
    • 제24권12호
    • /
    • pp.1595-1603
    • /
    • 2020
  • 포털 사이트의 인터넷 뉴스 댓글, SNS, 커뮤니티 사이트 등의 온라인상에서 명예 훼손 사건이 최근 점점 증가하고 있다. 온라인상의 차별 및 혐오 표현은 명예 훼손 문제뿐만 아니라 사생활 침해, 인신 공격 등 다양한 형태로 온라인 서비스 이용자들을 위협하고 있다. 지난 몇 년간 산업계와 학계는 이러한 문제를 해결하고자 다양한 방법으로 연구해왔다. 하지만 한국어 대상으로 수행된 딥러닝 기반 혐오 표현 탐지 연구는 아직까지 부족한 상황이다. 본 연구의 목적은 혐오 표현뿐만 아니라 다양한 차별적 표현에 대한 탐지를 위해 데이터셋을 구축하고 이를 분류하기 위한 딥러닝 모델링을 실험하는 것이다. 데이터셋 구축은 10명의 인원이 교차적으로 검토를 하면서 7개 항목에 대한 라벨링 기준을 확립했다. 본 연구는 약 137,111개에 해당하는 한국어 인터넷 뉴스 댓글 데이터셋에 대해 7개의 항목을 각각 이진 분류하고, 이를 딥러닝 기법을 통해 분석한다. 본 연구에서 제안하는 기법은 어텐션 기반 다중 채널 CNN 모델링 기법이다. 실험 결과 7개 항목에 대해 가중 평균 f1 점수를 평가했을 때, 70.32%의 성능을 달성했다.

도서 데이터와 본문 텍스트 통합 마이닝을 기반으로 한 도서 콘텐츠 장르 분석 및 시각화 시스템 구현 (Implementation of Analysis of Book Contents Genre and Visualization System based on Integrated Mining of Book Details and Body Texts)

  • 홍민하;박경훈;이원진;김승훈
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2015년도 제51차 동계학술대회논문집 23권1호
    • /
    • pp.27-29
    • /
    • 2015
  • 최근 IT기술의 발달로 인하여 다양한 분야에서 IT기술을 활용한 융합기술의 시도가 많아지고 있다. 특히 인터넷의 발달과 전자책(e-Book) 시장규모가 커짐에 따라 도서에 대한 정보가 많아지고 있으며, 이러한 정보를 분석하여 활용하는 서비스 시스템에 대한 관심이 높아지고 있다. 하지만 현재 서비스되고 있는 대부분의 온라인 서점에서는 도서의 기본 서지정보와 같이 도서 본문 내용과는 무관한 출판사나 서점에서 도서를 관리하기 위한 정보만을 제공하고 있으며, 도서에 대한 다양한 정보를 활용한 키워드 추출 및 장르 분류를 통한 검색의 효율성 제공이 미흡한 현실이다. 본 논문에서는 도서의 본문 텍스트 정보를 마이닝 처리하여 도서 페이지의 흐름에 따라 포함되어있는 장르를 분류하고 이에 대한 결과를 사용자에게 친화적인 시각화 기법으로 제공되는 시스템을 설계하고 구축하였다. 제안한 서비스 시스템은 의미 분석을 기반으로 도서 정보의 구체적, 실제적, 직관적 정보를 제공하여 도서 추천 서비스에 활용될 것이다.

  • PDF

웹 마이닝을 이용한 개인 광고기법에 관한 연구 (A Study on Personalized Advertisement System Using Web Mining)

  • 김은수;송강수;이원돈;송정길
    • 한국컴퓨터정보학회논문지
    • /
    • 제8권4호
    • /
    • pp.92-103
    • /
    • 2003
  • 최근 전자상거래의 발전과 인터넷 사용자의 급증으로 온라인 상에서 수많은 광고들이 서비스되고 있다. 하지만 이러한 광고서비스는 사용자들의 성향 분석을 기초로 하기보다는 해당 광고의 일방적 서비스에 그치고 있다. 따라서 많은 웹사이트들이 해당 광고의 효율적 서비스를 위해 개인화된 광고서비스를 원하고 있고 해당 서버의 로그 분석을 통한 서비스를 연구 및 시행하고 있다. 본 논문에서는 서버측 로그데이터의 분석이 아닌 로컬 시스템의 로그데이터를 이용하여 사용자의 선호도와 성향을 분석한다. 또한 해당 사이트 별 분류 카테고리를 만들어 해당 분류의 가중치를 부여함으로써 개인화된 광고 시스템을 제안하려고 한다. 사용자의 선호도 분석은 웹 개인화 기법 중 협업 필터링의 대상이 되는 사용자 선호도 정보를 방문 사이트 분류에 사용하고 학습에이전트의 대상이 되는 인터넷 사용자의 행동을 해당 사이트의 방문횟수로 가정하여 사용자의 성향분석을 시도하였다. 사용자의 선호도를 벡터로 표현하고, 성향분석 결과를 단순 적용형태가 아닌 연속적 데이터로 간주하였으며 이전 데이터와 이후 데이터의 성향분석 변화를 제안하는 기법을 이용하여 새롭게 분석하고 피드백 시킴으로써 지속적인 갱신과 적용을 할 수 있도록 제안하였다. 이러한 결과를 통해 해당 분류의 광고들을 선정하고 선정된 광고에 사용자 성향분석과 동일한 과정을 적용시킴으로써 차별화된 광고 서비스를 제공할 수 있는 방법을 제시하였다.

  • PDF

특성정보 프로파일에 기반한 동영상 데이터 분류 (Video Data Classification based on a Video Feature Profile)

  • 손정식;장중혁;이원석
    • 정보처리학회논문지D
    • /
    • 제12D권1호
    • /
    • pp.31-42
    • /
    • 2005
  • ]일반적으로 기존의 동영상 처리 방법들은 처리 대상 동영상 데이터의 메타 데이터 정보에 기반한다. 하지만, 동영상 데이터의 메타 데이터 정보는 해당 동영상의 상세한 의미적인 정보까지 표현하는데는 한계를 갖는다. 따라서, 메타 데이터 정보에 기반한 동영상 처리 기술은 다양한 동영상 정보를 보다 효율적으로 처리하는데 한계를 갖는다. 본 논문에서는 다양한 동영상 정보들을 효율적으로 분류하기 위한 방법으로 영상 정보에 기반한 직접 분류 방법을 제안한다. 본 논문에서 제안하는 영상 분류 방법에서는 관리자가 기준으로 제시한 동영상에 대한 마이닝을 수행하여 해당 동영상의 특성정보를 추출하여 동영상 분류의 기준이 되는 동영상 특성정보 프로파일을 생성한다. 이어서, 분류 대상 동영상들에 대해서 각 동영상을 기준 동영상의 특성정보 프로파일과 비교하여 유사성을 분석하고, 이론 기준으로 각 동영상을 분류한다. 또한, 분류 과정에서의 수행 속도를 향상 시키기 위한 방법으로 통합 프로과일 생성 및 비교 기법을 제시하며, 동영상 분류 과정에서의 정확도를 높이기 위한 가중치 기반 비교 방법을 제시한다. 끝으로 다양한 동영상 데이터를 활용한 유사도 비교 실험을 통해 제안된 방법의 효율성을 검증한다.

불완전한 데이터를 처리할수 있는 분류기 (A Classifier Capable of Handling Incomplete Data Set)

  • 이종찬;이원돈
    • 한국정보통신학회논문지
    • /
    • 제14권1호
    • /
    • pp.53-62
    • /
    • 2010
  • 본 논문은 변수 값들이나 부류 값을 손실한, 불완전한 데이터를 포함하는 데이터 집합을 가지고 학습하는 문제에 적용될 수 있는 분류 알고리즘을 소개한다. 이 알고리즘은 가중치 값과 확률 기법들을 이용하는 데이터 확장 방법을 사용한다. 이는 휘셔(Fisher)의 식을 기반으로 최적의 투사 면이 되도록 고려된 분류기를 확장함으로써 수행한다. 이를 위해, 데이터 확장에 적용되는 과정으로 부터 몇몇 식들이 유도된다. 제안한 알고리즘의 성능평가를 위해, 데이터에서 하나의 변수를 선택하고 이 선택된 변수에 소실 값과 소실되지 않은 값들의 비율을 변형함에 의해 다른 측정값들의 결과들이 반복적으로 비교된다. 또한 데이터 집합의 객관적인 평가를 위해 기계학습에서 지식 습득 도구로 널리 쓰이는 C4.5의 결과와 비교한다.

GIS를 활용한 폐기물 매립지의 적지분석 사례연구 (A Case Study on Suitability Analysis of Solid Waste Landfill Site utilizing GIS)

  • 이진덕;연상호;김성길
    • 한국지리정보학회지
    • /
    • 제3권4호
    • /
    • pp.33-49
    • /
    • 2000
  • 본 논문은 도시지역의 폐기물 매립지의 적지선정에 GIS기법을 적용한 사례연구를 제시한 것이다. 폐기물 매립지의 적지분석을 위한 여러 가지 평가인자들을 결정하고 데이터의 수집, 입력, 변환을 통하여 데이터베이스가 구축되었다. 또한 위성영상의 처리에 의해 대상지역의 최근 토지피복 분류와 식생활력도(NDVI) 데이터가 평가인자로서 GIS데이터에 통합되었다. 사회경제적 인자와 자연환경적 인자로 구분되는 1차 분류 평가인자들의 가중치를 이원비교법에 의해 결정된 2차분류 평가인자들의 가중치와 조합하여 분석하였다. 사례연구의 결과, 여러 가지 평가기준에 따른 적합성 분석이 가능하였으며, 사회경제적 인자를 중요하게 간주하는 관점에서 2차 분류 평가인자들의 가중치를 중요도에 따라 다르게 부여한 경우에서 가장 높은 적합도가 얻어졌다.

  • PDF