• Title/Summary/Keyword: 이온 크로마토그래피

Search Result 305, Processing Time 0.03 seconds

Identification of Proteins in Egg White Using Ion Exchange Cartridge and RP-HPLC (이온교환 카트리지와 RP-HPLC를 이용한 난백 단백질의 확인)

  • Kim, Hyun Moon;Kim, Ah Reum;Lee, Chang Soo;Kim, In Ho
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.713-717
    • /
    • 2012
  • Approximately forty proteins in egg white have been widely studied for their functional properties. To develop a procedure of separation for pure and non-altered proteins from egg white, purification study was conducted to isolate lysozyme, ovotransferrin, and ovalbumin. Ion exchange cartridge can selectively separate proteins from egg white, and reversed-phase HPLC (RP-HPLC) could identify separated proteins. Proteins in egg white were purified by HI trap ion exchange cartridge SP and Q with buffers pH 8.0 and 5.2. C18 column (Phenomenex, USA) was used for RP-HPLC analysis and isocratic mobile phase was used with acetonitrile (ACN)/distilled water (DW)/trifluoroacetic acid (TFA) in the ratio of 50/50/0.1. Comparing the retention times of standards in RP-HPLC experiments showed that ovotransferrin, ovalbumin, and lysozyme in egg white were eluted successively in the RP-HPLC column after the pretreatment in SP and Q ion exchange cartridges.

Purification of Lysozyme from Egg White by Multicycle Ion Exchange Chromatography (다중 이온교환크로마토그래피를 이용한 계란난백에서 리소짐의 분리)

  • 허윤석;김형원;김인호
    • KSBB Journal
    • /
    • v.18 no.2
    • /
    • pp.122-126
    • /
    • 2003
  • Multi-cycle chromatographic separation of Iysozyme from egg white was investigated. Multi-cycle chromatography was performed by repeated cycling(one cycle: resin equilibration, sample loading, washing, elution). Two types of cation exchange resins, Cellufine CM C-200 and Bio-rex 70, were used to determine the optimum condition for the separation of Iysozyme by multi-cycle chromatography. The resin was equilibrated in 20 mM Na-phosphate buffer(pH 7.0). Chromatograms of UV absorbance levels of every cycle were compared to confirm the eluting ability of Iysozyme in the two types of gel. Collected samples from eluting regions in every cycle were assayed by 15% SDS-PAGE.

Stability Evaluation on Measuring Water-soluble Chloride Anions from Iron Artifacts (철제유물의 수용성 염소이온 측정방법에 대한 안정성 평가)

  • Lee, Jae-Sung;Park, Hyung-Ho;Yu, Jae-Eun
    • Journal of Conservation Science
    • /
    • v.26 no.4
    • /
    • pp.397-406
    • /
    • 2010
  • The most ideal method to measure the water-soluble $Cl^-$ ion eluted from iron artifacts is conducting the analysis on desalting solution by Ion Chromatography. But most institutes related to cultural heritages use Cl meter by reason of lack of budget and experts. This study evaluated reliability and stability between Cl meter and Ion Chromatography by doing cross-validation with results from two methods to detect $Cl^-$ ion of desalting solution. From D.I water, extremely small quantities of $Cl^-$ ion was detected by the influence of remaining water-soluble $Cl^-$ ion at the electrode of Cl meter and water-soluble $Cl^-$ which remains in Sodium sesquicarbonate, components of reagent was detected as well. The first desalting solution had the most $Cl^-$ ions, $Cl^-$ ion slightly decreased from the second to the fourth desalting solution and tend to decrease again at the stage of dealkalified in D.I water. Each Cl meter has the standard deviation according to the measured numbers and the higher concentration of $Cl^-$ ion the desalting solution has, the wider the deviation is. But when the concentration of $Cl^-$ ion is low, it was stable to use Cl meter to detect the concentration of $Cl^-$ ion from iron artifacts because there is the small deviation, It is thought that conductivity meter method is not suitable for measuring $Cl^-$ ion, because the electrical conductivity of alkaline solution is too high to measure $Cl^-$ ion.

Development of Open Tubular Capillary Columns for Ion Chromatography (이온 크로마토그래피용 Open Tubular Capillary 컬럼의 개발)

  • Pyo, Dong Jin;Kim, Ho Hyun
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.2
    • /
    • pp.143-148
    • /
    • 2001
  • In this study, open tubular capillary columns for ion charomatography were developed to analyze trace amount of ions in samples. When small I,D. capillary column length is 1.0~5.0 m. The capillary columns were made using fused silica capillary(I.D:50㎛) and DMEOHA latex particles. The new conductivity cell and suppressor were also developed and made for capillary column ion chromatography. When several anions(fluoride, nitrite, nitale,chlorate,phosphte, sulfate) were analyzed using these capillary columns. reproducible and good chromatograms were obtained.

  • PDF

Determination of Glutathione in Biological Samples by Ion-pairing HPLC/FLD (이온쌍 HPLC/FLD를 이용한 생체 시료중의 Glutathione 농도 분석)

  • Yoo, Jeong-Yeon;Lee, Kyoung-Ok;Shin, Ho-Sang
    • Analytical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.28-33
    • /
    • 1999
  • Glutathione(GSH) in biological samples was determined by high performance liquid chromatographic(HPLC) method with fluorescence detector(FLD) after monobromobimane(MBB) or 4-fluoro-7-sulfobenzofurazan(SBD-F) derivatization. The detection limit of $0.03{\mu}g/mL$ was obtained after MBB derivatization, derivative of MBB was about 200 times more sensitive than that of SBD-F. N-acetylcysteine was used as internal standard and tetrabutylammonium ion as counter ion for better separation. The determination by ion-pairing chromatography after MBB derivatization was characterized by linearity in the range between $0.08{\sim}8.33{\mu}g/mL$ with a good correlation coefficient of 0.998. By precision test appeared relative standard deviation at less than 5% at three different concentrations. This method can be used for the analysis of GSH in plasma and tissue.

  • PDF

Separation for the Determination of $^{59/63}Ni$ in Radioactive Wastes (방사성 폐기물 내 $^{59/63}Ni$ 정량을 위한 분리)

  • Lee, Chang-Heon;Jung, Kie-Chul;Choi, Kwang-Soon;Jee, Kwang-Young;Kim, Won-Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.4
    • /
    • pp.309-317
    • /
    • 2005
  • A study on the separation of $^{99}Tc,\;^{94}Nb,\;^{55}Fe,\;^{90}Sr\;and\;^{59/63}Ni$ in various radioactive wastes discharged from nuclear power plants has been performed for a use in their quantification which is indispensible for the evaluation of the radionuclide inventory Ni was recovered along with Ca, Mg, Al, Cr, Ti, Mn, Ce, Na, K, and Cu through the sequential separation procedure of Re(as a surrogate of $^{99}Tc$), Nb, Fe and Sr by anion exchange and Sr-Spec extraction chromatography. In this research, chemical separation of Ni from the co-existing elements was investigated by cation exchange and Ni-Spec extraction chromatography. Precipitation behaviour of Ni and the co-existing elements with dimethylglyoxime(DMG) was investigated in ammonium $citrate/ethanol-H_2O$ and tartaric $acid/acetone-H_2O$ in order to purify separated Ni fractions and to prepare $^{59/63}Ni$ source for the radioactivity measurement using a gas proportional counter. Recovery of Ni separated through ion exchange chromatographic separation procedure was $92.1\%$ with relative standard deviation of $0.9\%$. In addition, recovery of Ni with DMG in the tartaric $acid/acetone-H_2O$ was $85.6\%$ with relative standard deviation of $1.9\%$.

  • PDF

Ion-Pair Chromatography of Organic and Inorganic Anions (유기 및 무기음이온에 대한 이온쌍크로마토그래피)

  • Sam Woo Kang
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.365-371
    • /
    • 1985
  • A cationic dye, methylene blue $(MTB^+)$ was examined as a counter ion in the separation of organic and inorganic anions by ion-pair chromatography. Nonabsorbing anions could be indirectly detected by photometric detector with the assistance of MTB^+ in visible range (665nm). A mixture of anions was able to be separated with good base line resolution and high sensitivity. The capacity factors were also determined in various experimental conditions to study retention mechanism. The retention followed the ion-interaction model where the $MTB^+$ occupies a primary layer at the stationary phase while the analyte anion and other anions in the system compete for forming the secondary layer.

  • PDF