• Title/Summary/Keyword: 이온 침투

Search Result 404, Processing Time 0.025 seconds

Synthesis and Electrochemical Properties of Nitrogen Doped Mesoporous TiO2 Nanoparticles as Anode Materials for Lithium-ion Batteries (질소도핑 메조다공성 산화티타늄 나노입자의 합성 및 리튬이온전지 음극재로의 적용)

  • Yun, Tae-Kwan;Bae, Jae-Young;Park, Sung-Soo;Won, Yong-Sun
    • Clean Technology
    • /
    • v.18 no.2
    • /
    • pp.177-182
    • /
    • 2012
  • Mesoporous anatase $TiO_2$ nanoparticles have been synthesized by a hydrothermal method using a tri-block copolymer as a soft template. The resulting $TiO_2$ materials have a high specific surface area of $230\;m^2/g$, a predominant pore size of 6.8 nm and a pore volume of 0.404 mL/g. The electrochemical properties of mesoporous anatase $TiO_2$ for lithium ion battery (LIB) anode materials have been investigated by typical coin cell tests. The initial discharge capacity of these materials is 240 mAh/g, significantly higher than the theoretical capacity (175 mAh/g) of LTO ($Li_4Ti_5O_{12}$). Although the discharge capacity decreases with the C-rate increase, the mesoporous $TiO_2$ is very promising for LIB anode because the surface for the Li insertion is presented significantly with mesopores. Nitrogen doping has a certain effect to control the capacity decrease by improving the electron transport in $TiO_2$ framework.

Comparison of Test Methods for Evaluation of Chloride Diffusion Coefficient in Concrete (콘크리트의 염소이온 확산계수 평가를 위한 시험방법 비교)

  • Lee, Chan-Young;Kim, Hong-Sam;Kim, Jin-Cheol;Cheong, Hai-Moon;Ahn, Tae-Song
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.581-584
    • /
    • 2008
  • Generally, durability of concrete structures under marine environment is grossly declined by detrimental ions such as chlorides, which penetrate concrete and was diffused to corrode reinforcing rod. Therefore, chloride diffusion properties in concrete are important for durability evaluation and design of concrete structure. For estimation of chloride diffusion coefficient in concrete, both evaluation methods are used for steady state and non-steady state derived from Fick's 1st and 2nd law, respectively. However, as it is very difficult to evaluate diffusion coefficient for non-steady state like service environment where concrete is actually exposed, indirect evaluation method by laboratory accelerated test is generally used. In this study, comparison of chloride diffusion behavior was investigated for fixed mix proportion and age of concrete using four accelerated test methods based on domestic and foreign standards. From test results, only relative comparison between concrete mixtures was possible using ASTM C 1202 test, and diffusion coefficient for steady state was estimated as low as 1/10 of that for non-steady state. In addition, diffusion coefficient estimated by immersion test was similar to result by NT build 492 test.

  • PDF

Fundamental Properties of MgO Base Ceramic Mortar for Concrete Repair Material (MgO계 세라믹 모르타르를 활용한 콘크리트 보수재료의 기초물성평가)

  • Park, Joon-Woo;Ann, Ki-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.4
    • /
    • pp.407-413
    • /
    • 2017
  • The fundamental property of magnesia phosphate cement (MPC) for concrete repair material was investigated in this research. For mechanical properties, setting time, compressive strength and tensile/flexural bond strength were measured, and hydration products were detected by X-ray diffraction. The specimens were manufactured with dead burnt magnesia and potassium dihydrogen phosphate was admixed to activate the hydration of magnesia and a borax was used as a retarder. To observe the pore structure and ionic permeability of MPC mortar, mercury intrusion porosimetry was performed together with rapid chloride penetration test (RCPT). As a result, time to set of Fresh MPC mortar was in range of 16 to 21 min depend on the M/P ratio. Borax helped delaying setting time of MPC to 68 min. The compressive strength of MPC with M/P of 4 was sharply developed to 30 MPa within 12 hours. The compressive strength of MPC mortar was in range of 11.0 to 30.0 MPa depend on the M/P ratio at 12 hours of curing. Both tensile and flexural bond strength of MPC to old substrate (i.e. MPC; New substrate to OPC; Old substrate) were even higher than ordinary Portland cement mortar (i.e. [OPC; New substrate] to [OPC; Old substrate]) does, accounting 19 and 17 MPa, respectively. The total pore volume of MPC mortar was lower than that of OPC mortar. MPC mortar had the entrained air void rather than capillary pore. The RCPT showed that total charge passed of OPC mortar had more than that of MPC mortar, which can be explained by the pore volume and pore distribution.

Groundwater Quality and Pollution Characteristics at Seomjin River Basin: Pollution Source and Risk Assessment (섬진강 주변 지하수의 수질 및 오염특성: 오염원 및 유해성 평가)

  • Na Choon-Ki;Son Chang-In
    • Economic and Environmental Geology
    • /
    • v.38 no.3 s.172
    • /
    • pp.261-272
    • /
    • 2005
  • The groundwaters in the basin of Seomjin River are classified mainly into Na-Cl type with high EC and $NaHCO_3$ type with low EC, and are characterized by enriched $K^+,\;Mg^{2+},\; NO_3^-,\; and\;SO_4\;^{2-}$ contents. The epm fraction of $Na^+Cl^-$ in TDS increases in general with increasing EC of groundwater. The correlation patterns among dissolved ions indicate that $Na^+\;and\;Cl^-$ are derived mainly from intruded seawater, and $K^+,\;Mg^{2-},\;and\;SO_4\;^{2-}$ from anthropogenic source such as a chemical fertilizer. The groundwaters that exceed the recommended limits far agricultural irrigation water contains $23\%\;of\;Cl^-$ reflecting sea-water intrusion, but $50\%\;of\;NO_3^-$ as an anthropogenic pollution, among the wells investigated. In risk assessment of groundwaters by the EC-SAR relationship, only $40\%$ of the groundwaters shows the suitable quality for agricultural irrigation water without any sodium and salinity hazards. Consequently, the pollution sources that cause degradation of groundwater quality in the basin of Seomjin River are the usage of chemical fertilizers and the intrusion of seawater, resulted primarily from the extension of riverward backflow of seawater and secondarily from the overpumping of groundwater.

Durability Evaluation of Cement Concrete Using Ferrosilicon Industrial Byproduct (페로실리콘 산업부산물 활용 시멘트 콘크리트의 내구성능 평가)

  • Chang-Young Kim;Ki Yong Ann
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.89-96
    • /
    • 2023
  • In this paper, a ferrosilicon by-product was evaluated to confirm the feasibility of recycling it as supplementary cementitious material of ordinary Portland cement in concrete. Three different levels of replacement ratio (10 %, 20 % and 30 % of total binder) were applied to find which is the most beneficial to be used as a binder. Ferrosilicon concrete was initially assessed at setting time and compressive strength. Durability was evaluated by the resistance to chloride penetration test(RCPT) and alkali-silica reaction(ASR) with a comparison to silica fume concrete due to their similarity in chemical composition. The porosimetry and X-ray diffraction analysis along with energy dispersive X-ray spectroscopy give information on the microstructural characteristics of the ferrosilicon concrete. It was found that 10 % ferrosilicon concrete has higher strength while 20 %, 30 % have lower strength than OPC concrete. However, chemical resistance to chloride attack is higher when replacement is increased. Compared to silica fume, the durability of ferrosilicon might be less efficient however, it is obviously beneficial than OPC. High SiO2 content in ferrosilicon results in producing more C-S-H gel which could make denser pore structure. Most of the risk of alkali silica reaction to silicate binders through length change tests was less than 0.2 %, and both mortar using ferrosilicon and silica fume showed better resistance to alkali silica reaction as the substitution rate increased.Reuse of industrial waste rather than producing highly refined additives might reduce environmental load during manufacture and save costs.

Estimation on the Durability of High-Strength Concrete using Metakaolin (Metakaolin 혼합 고강도 콘크리트의 내구특성 예측)

  • Lee, Sang-Ho;Moon, Han-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.2
    • /
    • pp.173-180
    • /
    • 2005
  • Metakaolin is a cementitious material for producing high-strength concrete. This material is now used as substitute for silica-fume. In this paper, we did the mechanical and durability test such as compressive/tensile/flexural strength test, chloride ion diffusion, chemical attack and repeated freezing and thawing, carbonation test. In the mechanical tests, 10~15% for binder is optimum substitute rate. And, in the chloride ion diffusion test, according to the increase of substitute of metakaolin & silica-fume for binder, the diffusion coefficient was more reduced. In the chemical attack test, by the filler effect of fine powder such metakaolin and silica-fume, the resistance is more excellent than normal concrete. In the other durability test, the concrete using metakaolin also compared with those of silica-fume substitute concrete. Through these tests, we recognized that metakaolin can be used as a substitute for silica-fume.

The Strength and Characteristic of PCC Bottom Ash (석탄재의 강도 특성에 관하여)

  • Shin, Sanguok;Sanjeev, Kumar;Jung, Teuok;Shin, Bangwoong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.2
    • /
    • pp.57-63
    • /
    • 2007
  • Coal combustion by-product (CCB) bottom ash, obtained from burning of pulverized coal, has physical properties which are similar to that of natural sand with particle sizes ranging from fine gravel to fine sand. Several studies have been completed to utilize pulverized coal combustion (PCC) bottom ash as a partial or full replacement of fine aggregate in cement concrete products. The objectives of this study were to develop air-entrained concrete composites using PCC bottom ash from burning of Illinois coal and to demonstrate the use of these composites on real-world projects. The results obtained show that the compressive, splitting-tensile, and flexural strengths of concrete composites is slightly lower than that of conventional concrete are early curing ages. However, after 60 days of curing, the strength of concrete composites is either equal to or slightly higher than that of an equivalent conventional concrete. The concrete composites showed lower resistance to chloride ion penetrability than that of an equivalent conventional concrete at early curing ages. However, after 28 days of curing, concrete composites showed better resistance to chloride ion penetrability compared to that of an equivalent conventional concrete.

  • PDF

Durability Assessment for Crushed Sand Wet-mix Shotcrete Mixed with Mineral Admixtures (부순모래를 사용한 습식 숏크리트의 광물성 혼화재료 혼입에 따른 내구성 평가)

  • Lee, Kyeo-Re;Han, Seung-Yeon;Nam Gung, Kyeong;Yun, Kyong-Ku
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.5
    • /
    • pp.607-614
    • /
    • 2014
  • The purpose of this dissertation was to investigate the effect of mineral admixtures, such as fly ash, blast furnace slag powder, meta kaolin and silica fume, on the basic properties and durability of crushed sand shotcrete, selecting a series of shotcrete mixtures with a variable admixture. Compressive strength increased as the content of mineral admixtures increased, specially it was the most effective when using meta kaolin both at sample specimen and core after shotcreting. Rapid chloride ion permeability test and sulfuric acid resistance test showed that both durability increased as the substitute rate of mineral admixture increased. In air void analysis with image analysis, the targeted the spacing factor and specific surface were not satisfied because air-entrained agent was not used.

진공 플라즈마 용사코팅시 분말 이송가스 유량이 적층효율에 미치는 영향

  • Jeong, Yeong-Hun;Nam, Uk-Hui;Byeon, Eung-Seon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.161-161
    • /
    • 2014
  • 열플라즈마는 주로 아크 방전에 의해 발생시킨 전자, 이온, 중성입자(원자 및 분자)로 구성된 부분 이온화된 기체로, 국소열평형상태를 유지하여 구성입자가 모두 수천에서 수만도에 이르는 같은 온도를 갖는 고속의 제트 화염 형태를 이루고 있다. 이렇게 고온, 고열용량, 고속, 다량의 활성입자를 갖는 열플라즈마의 특성을 이용하여, 종래 기술에서는 얻을 수 없는 다양하고 효율적인 산업적 이용이 활발히 진행되고 있다. 용사코팅은 노즐 출구를 통해서 외부로 방출되는 열 플라즈마 화염을 이용하는 것으로 이 화염의 와류 특성으로 인하여 외기의 가스가 화염내부로 침투하는 특성을 가진다. 이러한 현상은 열원의 냉각효과 외에도 외기를 구성하는 기체 분자의 내부 유입을 의미하는 것으로 대기 상태에서 공정이 이루어진다면 열원 내로 유입되는 대기 내의 산소가 모재 표면과 반응하여 산화가 진행된다. 이러한 산화과정은 용사 코팅의 품질을 저하시키는 요인이 되므로, W, Ti 등과 같은 반응성이 높은 재료의 코팅은 산화과정을 방지하기 위하여 진공에서 코팅을 하여야만 한다. 진공 플라즈마용사코팅은 진공 또는 저압의 불활성 분위기 중에서 열플라즈마 화염에 용사재료를 투입하여 플라즈마 화염 내부에서 순간적으로 이를 용융시킨 후 고속으로 분출, 모재에 적층시키는 코팅공정이다. 이때 분말상의 용사재료를 고속으로 화염 중심에 투입하여 최대 에너지 전달이 이루어지도록 하는 것이 적층효율 및 코팅품질을 향상에 필수적이다. 하지만 플라즈마 화염 내부를 고속으로 이동하는 입자의 온도와 속도 및 궤적을 측정하여 제어하는 것은 매우 어렵기 때문에, 통상 형성된 코팅의 구조와 두께로부터 경험적으로 파라미터를 결정하는 것이 일반적이다. 본 연구에서는 초고속 레이저 카메라와 이미지 분석용 소프트웨어를 이용하여 플라즈마 화염내의 비행입자 궤적을 추적하고, 이를 통해 분말 이송가스의 유량이 코팅 효율 및 미세구조에 미치는 영향을 조사하였다. 플라즈마 화염은 중심부가 가장 높은 온도와 속도를 가지고 있기 때문에, 분말 이송가스의 유량이 적을 경우 투입된 분말은 단지 플라즈마 화염의 상부 경계면을 지나는 궤적을 갖게된다. 이로 인해 분말의 용융이 충분히 이루어지지 않아 적층 효율이 낮고 미용융 입자 및 기공이 많은 미세구조를 보였다. 이송가스 유량을 증가시키게 되면, 분말의 궤적은 플라즈마 화염의 중심부를 지나게 되어 적층 효율이 증가하고 미세구조 또한 개선되었다. 하지만 이송가스 유량이 지나치게 클 경우, 투입된 분말 입자는 플라즈마 화염을 조기에 관통하게 되어 비행궤적은 온도와 속도가 낮은 영역에 형성되었다.

  • PDF

Engineering Properties of Sewage Polymer Concrete Culvert (폴리머 콘크리트를 적용한 하수암거의 공학적 특성)

  • Kwon, Seung Jun;Min, Byung Yoon;Park, Sang Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.9-17
    • /
    • 2012
  • Concrete sewage culvert shows degradation with time since it is always exposed to various harmful ions, and deterioration of concrete culvert propagates to structural safety problems. After reclamation, maintenance for concrete sewage culvert is very difficult so that high durable and structural performance are essential for the sewage concrete culvert. Recently polymer concrete has been used to improve mechanical properties and durability performance. In this paper, engineering properties are evaluated for sewage culvert made with polymer concrete, and leakage and adhesive strength between joints are evaluated with small-scale models. The polymer sewage culvert shows high compressive strength over 100MPa with low water permeability and chloride penetration. Furthermore, high resistances to chemical and biological attack are evaluated. Through tests for leakage and adhesive, unification of joints is verified with evaluation of no leakage and high adhesive strength. Precast polymer sewage culvert in this paper can be actively used for severe conditions like sewage lines.