• Title/Summary/Keyword: 이온확산

Search Result 651, Processing Time 0.029 seconds

Geoenvironmental Influence on the Recycled Soil from Demolition Concrete Structures for using in Low Landfilling (건설폐토석의 성토에 따른 지반환경적 영향)

  • Shin, Eun-Chul;Kang, Jeong-Ku;Ahn, Min-Hee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.12
    • /
    • pp.21-30
    • /
    • 2011
  • The recycled soil that is proceeded from demolition concrete structures was analyzed by the methods of the physical and mechanical tests of soil and TCLP test to use the soil in low landfilling for the construction of an industrial complex. The laboratory test for diffusion of alkali ion in soil mass was analyzed by the methods of XRF and ICP. The fish toxicity test was also conducted to find an environmental influence. The recycled soil through the laboratory test satisfied the engineering property for low landfilling and the criteria of soil contamination. However, the solution which producted by 1:1 ratio of recycled soil and water contained the high pH concentration by alkali ion. The calcium hydroxide solution by CSH cement paste was estimated as the main reason why pH concentration is increased more than 9.0. The high pH concentration in recycled soils causes a toxicity to the livability of fishes. A diffusion area of pH concentration in the ground was analyzed by the Visual Modflow Ver. 2009 program based on geotechnical investigation. The high pH concentration in the recycled soils can be remained as high value due to cement paste in the long term period. Therefore, in the early stage of landfilling work, the mixing with the weathered granite soil is necessary to control the pH concentration.

Counterion Specific Conformational Transition and ion Selective Transport of a Poly(L-glutamic acid)/PVA Blend Membrane (Poly(L-glutamic acid)/PVA 블렌드막의 대이온 선택적인 구조전이와 이온투과 특성)

  • 허양일
    • Polymer(Korea)
    • /
    • v.24 no.6
    • /
    • pp.802-809
    • /
    • 2000
  • Counterion-specific helix formation and ion-selective transport of alkali metal chlorides (LiCl, NaCl, KCl, CsCl) were investigated for a poly(L-glutamic acid)(PLGA)/poly (vinyl alcohol)(PVA) blend membrane immersed in aqueous ethanol. The counterion specificity for helix formation of PLG alkali metal salts in the membrane was Li>Na>K>Cs. This specificity is ascribed to a contact ion-pair formation between the PLG carboxyl anion and the bound counterion, which depends on the energy balance between the electrostatic interaction and the desolvation. In aqueous ethanol, an appreciable ion-selectivity was observed for the permeability coefficient, i.e. Li$^{+}{\cdot}$Cl$^{-}$) formation between counterion and coion, and the latter to a specific interaction of diffusing counterions with polymer charges.

  • PDF

A Study on the Approximation analytical Model of PECVD Topography simulator considering the effect of the presheath (플라즈마 증착 형상 모의 실험기의 앞덮개 효과를 고려한 근사 해석적 모델에 관한 연구)

  • Lee, Kang-Whan;Son, Myung-Sik;Hwang, Ho-Jung
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.1
    • /
    • pp.90-99
    • /
    • 1999
  • In this work, we consider the effect of the presheath on the ion angular distribution. The recent shows the ion-neutral collision in the presheath and the calculated energy flux with the ion angular distribution at the presheath edge in plasma reactor. We also propose a new approximation analytical model for the ion angular distribution and the energy flux distribution with ion temperature. The ion passing the presheath region, Shows a ion scattering effect without ion-neutral collisions. This because the kinetic energy by the ambipolar diffusion field is changed by the gas collision,. Using the proposed approximation analytical model, we show the simulated results of a deposit profile on variable trench shape.

  • PDF

Effect of High Pressure on Polarographic Parameters of Metal Complex Ion (金屬錯이온의 폴라로그래피的 파라미터에 미치는 壓力의 影響)

  • Heung Lark Lee;Zun Ung Bae;Jong Hoon Yun
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.444-451
    • /
    • 1987
  • The dependence of polarographic parameters on the pressure for the reduction of copper(II), cadmium(II), and zinc(II) complex ions with ethylenediamine, propylenediamine, and diethylenetriamine has been studied. In this study the dropping mercury electrode, the mercury pool electrode, and helix type of platinum wire were used as the working, the reference, and the auxilary electrode, respectively. With increasing the pressure from 1 atmosphere to 1,500 atmospheres, the reduction half-wave potentials of metal complex ions are shifted to the negative values and the diffusion currents become considerably larger, in keeping with the theory on the change of the physical properties of the electrolytic solution such as the density, the viscosity, the dielectric constant, and the electrical conductance, etc. The slope values of the logarithmic plot are increased with increasing the pressure, which indicates the more irreversible reduction. The temperature coefficients of diffusion current observed over the range of the temperature from 25$^{\circ}$C to 35$^{\circ}$C are about two percentage with increasing the pressure, therefore the polarographic reduction under the high pressure is controlled by diffusion. The linear relationships between diffusion current and concentration of metal complex ions are established over all pressure range.

  • PDF

Time Evolution of Material Parameters in Durability Design of Marin Concrete (해양콘크리트의 내구성 설계를 위한 재료 매개변수의 시간단계별 해석)

  • Yoon, In-Seok;Kim, Young-Geun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1077-1080
    • /
    • 2008
  • Material parameters such as surface chloride content, water permeability coefficient, chloride diffusivity and critical chloride content are a substantial key parameter for understanding the durability performance of concrete and its micro-structural densification. Over the past few decades, a considerable number of studies on the durability design for marine concrete structures have been carried out. However, the results are different to each other. In order to establish a consistent durability design system of concrete, it is a precondition to define material parameters, which affect deterioration of concrete due to chloride penetration. Such parameters are surface chloride content, chloride diffusivity, and critical chloride content. Usually these parameters are assumed as temporary constant values or obtained from the experimental results for short term. However, it is necessary to define these parameters reasonably, because these significantly influence the calculation of service life of concrete. In this paper, it is introduced to define material parameters of concrete for chloride diffusion, such as surface chloride content $[Cl]_s$, water permeability coefficient K, chloride diffusivity $D_{Cl}$, critical chloride content $[Cl]_{cr}$. These are expressed as time function considering hydration evolution of hardened cement paste. The definition of the material parameters is a prerequisite to simulate chloride penetration into concrete as time elapsed.

  • PDF

A Study on the Cover Property of Offshore Reinforced Concrete Structure (내구성 해양 RC 구조물의 철근 피복적정성에 관한 연구)

  • Im, Jung-Soon;Bahng, Yun-Suk;Jo, Jae-Byung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.3 s.14
    • /
    • pp.73-81
    • /
    • 2004
  • On this study, durability decreasing element caused by salt damage was analyzed elementally and studied with the data of the inside and outside in the country. The design strength and water-cement ratio according to diffusion coefficients of chloride were applied to Fick's diffusion equation. The required over depended on environmental conditions is estimated with endurance period, and the influences on cover according to the transformation of the each parameter were investigated. In consequence, if water-cement ratio decreases and design strength increases, it shows that slowing infiltration velocity of chloride ion can decrease required cover. Especially, it is more effective to use Portland blast-furnace slag cement into high strength concrete in the splash zone environmental conditions in blocking the diffusion of chloride ion. As the result, in the case of the offshore concrete structure needed high durability, it is needed to increase cover($3cm{\sim}8cm$) than minimum standard cover(8cm) according to environmental conditions.

Evaluation of Testing Method for Quality Control of Chloride Diffusivity in Concrete under chloride attack environment (콘크리트 구조물의 염해 내구성능 검토를 위한 현장 품질관리 시험법 검토)

  • Kim, Hong-Sam;Cheong, Hai-Moon;Ahn, Tae-Song;Kim, Cheol-Ho;Geon, Byung-Sub
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.973-976
    • /
    • 2008
  • Recently, it is increasingly reported that the deterioration of concrete structure under marine environments is due to diffusion and penetration of chloride ions. It is very important to estimate the diffusion coefficient of chloride ion in concrete. Estimation methods of chloride diffusivity by concentration difference is time-consuming. Therefore, chloride diffusivity of concrete is mainly conducted by electrically accelerated method, which is accelerating the movement of chloride ion by potential difference. However, there has not been any proper method for field quality control to closely determine the diffusion coefficient of chloride ion through accelerated tests using potential difference. In this paper, the various test methods for determination of chloride diffusion coefficient in concrete were investigated through comparison accelerated tests. From the results of estimated diffusion coefficient of chloride ion, relationship between the ponding test and acceleration test was examined.

  • PDF

Assessment of Recovery of Chloride Penetration Resistance of Self-healing Cement Mortars Containing Layered Double Hydroxide (이중층수산화물을 혼입한 자기치유 시멘트 모르타르의 염화물 침투 저항성 회복 평가)

  • Kyung Suk, Yoo;Seung Yup, Jang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.600-608
    • /
    • 2022
  • This study investigates the effect of layered double hydroxide (LDH) on the healing performance of self-healing concrete by assessing the chloride penetration resistance of self-healing cement mortars using electrical chloride ion migration-diffusion test. Test results show that both mortars containing healing materials only and mortars containing healing materials and Ca-Al LDH together mostly had higher migration-diffusion coefficients right after cracking, but the migration-diffusion coefficients decreased more than that of OPC with increasing healing ages, and thus, they yielded higher healing capacities than OPC. Also, mortars containing Ca-Al LDH together with healing materials showed higher reduction of their migration-diffusion coefficients, and thus, higher healing capacities than mortars containing healing materials only. This suggests that as the self-healing product increases on the crack surface, the binding of chloride ions by LDH inside the crack increases.

Study of the Calendar Aging of Lithium-Ion Batteries Using SEI Growth Models (SEI 성장 모델을 이용한 리튬 이온 배터리의 캘린더 노화 연구)

  • Dong Hyup Jeon;Byungman Chae;Sangwoo Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.1
    • /
    • pp.48-53
    • /
    • 2024
  • We predicted the calendar aging and long-term lifetime of lithium-ion batteries using an electrochemical-based SEI growth model. Numerical simulation was carried out employing the four different long-term SEI growth models (i.e., solvent diffusion limited model, electron migration limited model, Li-interstitial diffusion limited model, reaction limited model), and we calculated the capacity fade and loss of lithium inventory during calendar aging. The result showed that the electron migration limited model and Li-interstitial diffusion limited model showed lower capacity fade, while the solvent diffusion limited model and reaction limited model reached 80% of capacity fade within 10 years. During calendar aging, the lower storage temperature showed less capacity fade due to the hindrance of SEI growth rate. During cycling, the higher C-rate showed a shorter life cycle; however, the differences were not significant.

Effect of Micro-Cracks on Chloride Ions Penetration of Concrete II: Examination of Critical Crack Width (미세균열이 콘크리트의 염소이온 침투에 미치는영향 II: 임계 균열폭의 고찰)

  • Yoon, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.707-715
    • /
    • 2007
  • The vulnerability of concrete to its environment is significantly dependent on the fact that concrete is a porous material. For well-consolidated and well-cured concrete, its service life is a very long and an entrance of aggressive substance might be only pores. However, for cracked concrete, cracks should be preferential channel for the penetration of aggressive substance such as chloride ions. The effect of crack on chloride penetration depends on its size for example, crack width and crack depth. The purpose of this study is examining the effect of crack width and crack depth on chloride penetration. In order to visualize chloride penetration via cracks, RCM (rapid chloride migration) testing is accomplished. Crack width is examined using an optical microscope and CMOD value is used to estimate average crack width. From the examination on the trend of chloride diffusion coefficients of concrete specimens with various crack widths, a critical crack width and a critical crack depth are found out.