• Title/Summary/Keyword: 이성분계 혼합물

Search Result 57, Processing Time 0.028 seconds

Flame Extinguishing Concentrations of Mixed Gaseous Agents (가스계 혼합소화약제의 불꽃소화농도)

  • 김재덕;임종성;이윤우;이윤용
    • Fire Science and Engineering
    • /
    • v.15 no.1
    • /
    • pp.34-40
    • /
    • 2001
  • Fire extinguishing efficiency of mixed gaseous agents were investigated by the cup-burner test and predicting by the model of flame extinguishing concentration. The binary mixed agents that tested were carbon dioxide/HFC-23, carbon dioxide/HCFC-22, carbon dioxide/HFC-227ea, carbon dioxide/HFC-125, carbon dioxide/FIC-13I1, Hexafluoropropylene/HFC-23 and ternary mixed agents were carbon dioxide/HFC-23/HFC-l34a, carbon dioxide/HFC-23/HFC-227ea, carbon dioxide/HFC-23/HFC-125. A model which contains the flame extinguishing concentration and composition of pure components predicted the flame extinguishing concentration of mixture well. This model was superior when each component of the mixture exhibit physical fire extinguishing performance.

  • PDF

Calculation of the Viscosity and Diffusion Coefficients for Some Binary Gaseous Mixtures Using the Semi-empirical Inversion Method (반실험적 반전 방법을 이용한 이성분계 기체 혼합물의 점도와 확산계수 계산)

  • Rafiee, H.R.;Heidari, N.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.4
    • /
    • pp.581-589
    • /
    • 2011
  • Viscosity and diffusion coefficients for the gaseous binary mixtures of benzene- toluene, benzene-phenol and benzene-p-xylene over a wide range of temperature and composition have been predicted using the semi-empirical inversion method. The accuracies are within 3% and 4% for viscosities and diffusion coefficients, respectively.

The Flash Point Measurement for Binary Flammable Mixture (이성분계 가연성 혼합물의 인화점 측정)

  • Ha, Dong-Myeong;Lee, Sungjin
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.5
    • /
    • pp.60-65
    • /
    • 2014
  • The flash point is the major physical property used to characterize the fire hazard of flammable liquid solutions. In the present study, the main focus is on measuring and estimating the flash points for binary flammable mixture. The flash points for n-propanol+propionic acid were measured by Seta flash closed cup apparatus. The experimental data were correlated with the van Laar and NRTL equations through the optimization method. The results estimated by these correlations were compared with the values calculated by the method based on Raoult's law. The optimization method were found to be better than the method based on the Raoult's law.

Isobaric vapor-liquid equilibria for ternary and each corresponding binaries of the system n.Dodecane-1.Decanol-1.Dodecanol at 15 mbar (n.Dodecane-1.Decanol-1.Dodecanol 삼성분계 및 각 이성분계의 15 mbar 정합 기액평형)

  • 박소진;이태종
    • Journal of Energy Engineering
    • /
    • v.2 no.3
    • /
    • pp.308-314
    • /
    • 1993
  • Both Vapor-liquid equilibrium data and boiling temperature have been measured for ternary and each corresponding binaries of n.dodecane-1.decanol-1.dodecanol mixture under constant pressure of 15 mbar. Measured vapor-liquid equilibrium data were correlated with the conventional g$\^$E/ model ; Margules, van Laar, Wilson, NRTL and UNIQUAC equations. Binary equilibrium data were thermodynamically tested by Redlich-Kister integral method and ternary data were also qualitatively checked by two point consistency test, suggested by McDermott-Ellis. Among the binary VLE data, only the system n.dodecane-1.decanol has minimum boiling azeotrope.

  • PDF

Fouling Study with Binary Protein Mixtures in Microfilration (이성분계 단백질 혼합물의 미세막 분리공정에서 막오염에 관한 연구)

  • Ahn, Byung Hun;Moon, Dong Ju;Yoo, Kye Sang;Ho, Chia Chi
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.236-242
    • /
    • 2005
  • Membrane fouling by protein mixtures during microfiltration has been investigated for binary mixtures of bovine serum albumin (BSA), casein, lysozyme, pepsin, and ovalbumin. Filtration experiments were carried out using $0.2{\mu}m$ polycarbonate track-etched (PCTE) membrane in a stirred cell under constant transmembrane pressure (14 kPa) and concentration of hydrogen ion (pH=11) to study the effect of mixture composition on filtrate flux decline. Flux decline data were analyzed using a pore blockage-cake formation model developed recently. It was found that the model is in a good agreement with the experimental data. Fouling parameters such as the rate of pore blockage(${\alpha}$), the initial resistance of the protein deposit ($R_{po}$) and the increasing rate of the protein layer resistance(${\beta}$) were used to evaluate the rate of filtrate flow by membrane fouling in the binary mixture system. Generally, the trend of ${\alpha}$ is comparable with that of filtrate flux decline. It was also found that fast flux decreasing was observed over the binary mixture containing casein. The result is due to high value of the initial resistance of the protein deposit ($R_{po}$) over casein.

The Measurement of Flash Point for Unflammable-Flammable Binary Mixtures(CCl4+o-Xylene and CCl4+p-Xylene) Using Open Cup Tester (개방식 장치를 이용한 난연성-가연성 이성분계 혼합물(CCl4+o-Xylene and CCl4+p-Xylene)의 인화점 측정)

  • Kim, Chang-Seob;Lee, Sungjin;Ha, Dong-Myeong
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.18-23
    • /
    • 2015
  • The flash point is used to categorize inflammable liquids according to their relative flammability. The flash point is important for the safe handling, storage, and transportation of inflammable liquids. The flash point temperature of two binary liquid mixtures($CCl_4+o-xylene$ and $CCl_4+p-xylene$) has been measured for the entire concentration range using Tag open cup tester. The flash point temperature was estimated using Raoult's law, UNIQUAC model and empirical equation. The experimentally derived flash point was also compared with the predicted flash point. The empirical equation is able to estimate the flash point fairly well for $CCl_4+o-xylene$ and $CCl_4+p-xylene$ mixture.

Measurement of Flash Point for Binary Mixtures of Toluene, Methylcyclohexane, n-heptane and Ethylbenzene at 101.3 kPa (Toluene, Methylcyclohexane, n-heptane 그리고 Ethylbenzene 이성분 혼합계에 대한 101.3 kPa에서의 인화점 측정)

  • Hwang, In Chan;In, Se Jin
    • Fire Science and Engineering
    • /
    • v.31 no.3
    • /
    • pp.19-24
    • /
    • 2017
  • Flammable substances are used in laboratories and industrial process. The flash point (FP) is one of the most important physical properties used to determine the potential for characterizing the fire and explosion hazard of liquids. The FP data at 101.3 kPa were measured for the binary systems {toluene+ethylbenzene}, {methlycyclohenxane+ethylbenzene} and {n-heptane+ ethylbenzene}. The experiments were performed according to the standard test method (ASTM D 3278) using a SETA closed cup flash point tester. The measured FPs were compared with the values predicted using the following activity coefficient models: Wilson, Non-Random Two Liquid (NRTL), and UNIversal QUAsiChemical (UNIQUAC). The average absolute deviation between the predicted and measured lower FP was less than 1.74 K.

Measurement of Flash Point for Binary Mixtures of Methanol, Ethanol, 1-propanol and Toluene (Methanol, Ethanol, 1-propanol 그리고 Toluene 이성분 혼합계에 대한 인화점 측정)

  • Hwang, In Chan;Kim, Seon Woo;In, Se Jin
    • Fire Science and Engineering
    • /
    • v.32 no.1
    • /
    • pp.1-6
    • /
    • 2018
  • The flash point is one of the most important parameters used to characterize the ignition and explosion hazards of liquids. Flash points were measured for several binary systems containing toluene, including {methanol+toluene}, {ethanol+toluene}, and {1-propanol+toluene}. Experiments were performed according to the standard test method using a SETA closed cup flash point tester. The measured flash points were compared with the predicted values calculated using the following $G^E$ models: Wilson, NRTL, and UNIQUAC. The average absolute deviation between the predicted and measured lower flash point was less than 1.69 K.

The Calculation and Measurement of Flash Point for Water+1-Propanol and Water+2-Propanol Using Closed Cup Aparatus (밀폐식 장치를 사용한 Water+1-Propanol 과 Water+2-Propanol의 인화점 측정과 계산)

  • Ha, Dong-Myeong;Lee, Sungjin
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.190-197
    • /
    • 2016
  • Flash point is the one of the important properties for the safe handling of inflammable liquid solution. In this paper, flash points of binary liquid solutions, water+1-propanol and water+2-propanol, were been measured by using Seta flash closed cup aparatus. Flash point was estimated using regression analysis method. Flash points were also estimated by the method based on Raoul's law and the method optimizing the binary parameters of van Laar equation. Experimental results were compared with the calculated results. The regression analysis method is able to estimate the flash point fairly well for water+1-propanol and water+2-propanol mixture.