Proceedings of the Korean Information Science Society Conference
/
2001.10a
/
pp.664-666
/
2001
침입탐지의 종류를 탐지 방법 측면에서 구분해보면 크게 이상탐지와 오용탐지로 나뉘어진다. 침입탐지의 주된 목적은 탐지오류를 줄이고 정확한 침입을 판가름하는데 있다. 그러나 기존의 이상탐지와 오용탐지 기법은 그 방법론상에 이미 판단오류 가능성을 내포하고 있다. 이상탐지는 정상적인 사용에 대한 템플릿을 기초로 하므로 불규칙적인 사용에 대처할 수 없고, 오용탐지는 침입 시나리오라는 템플릿에 기초하므로 알려지지 않은 침입에 무방비 상태인 문제가 있다. 침입의 주요 목적은 관리자의 권한을 얻는 것이며 그 상태에서 쉘을 얻은 후 원하는 바를 행하는 데 있을 것이다. 그러므로 그 상태를 얻으려는 프로세스와 추이와 결과를 모니터링하여 대처하면 호스트기반 침입의 근본적인 해결책이 될 수 있다. 그러므로 본 연구에서는 프로세스의 상태를 모니터링함으로써 컴퓨터시스템의 침입을 탐지하는 새로운 기술에 대해 제안하고 설명한다. 프로세스의 상태는 일반상태, 특권상태 관리자상태 등으로 구분되며, 시스템에 의해 부여된 실사용자ID, 유효ID, 실그룹ID, 유효그룹ID를 점검함으로써 이루어진다. 본 연구에서 모니터링에는 BSM을 사용하며, 호스트기반에서 사용한 프로세스의 상태 모니터링에 의한 침입탐지시스템 구현한다.
Journal of the Korea Institute of Information Security & Cryptology
/
v.29
no.5
/
pp.1027-1037
/
2019
Conventional cyber-attack detection solutions are generally based on signature-based or malicious behavior analysis so that have had difficulty in detecting unknown method-based attacks. Since the various information occurring all the time reflects the state of the system, by modeling it in a steady state and detecting an abnormal state, an unknown attack can be detected. Since a variety of system information occurs in a string form, word embedding, ie, techniques for converting strings into vectors preserving their order and semantics, can be used for modeling and detection. Novelty Detection, which is a technique for detecting a small number of abnormal data in a plurality of normal data, can be performed in order to detect an abnormal condition. This paper proposes a method to detect system anomaly by cyber attack using embedding and novelty detection.
The Journal of Korean Institute of Communications and Information Sciences
/
v.34
no.3B
/
pp.311-317
/
2009
The traditional network anomaly detection systems execute the threshold-based detection without considering dynamic network environments, which causes false positive and limits an effective resource utilization. To overcome the drawbacks, we present the adaptive network anomaly detection model based on artificial immune system (AIS) in centralized network. AIS is inspired from human immune system that has learning, adaptation and memory. In our proposed model, the interaction between dendritic cell and T-cell of human immune system is adopted. We design the main components, such as central node and router node, and define functions of them. The central node analyzes the anomaly information received from the related router nodes, decides response policy and sends the policy to corresponding nodes. The router node consists of detector module and responder module. The detector module perceives the anomaly depending on learning data and the responder module settles the anomaly according to the policy received from central node. Finally we evaluate the possibility of the proposed detection model through simulation.
The Transactions of the Korea Information Processing Society
/
v.13
no.3
/
pp.130-139
/
2024
Artificial intelligence models are being used to detect facility anomalies using physics data such as vibration, current, and temperature for predictive maintenance in the manufacturing industry. Since the types of facility anomalies, such as facility defects and failures, anomaly detection methods using autoencoder-based unsupervised learning models have been mainly applied. Normal or abnormal facility conditions can be effectively classified using the reconstruction error of the autoencoder, but there is a limit to identifying facility anomalies specifically. When facility anomalies such as unbalance, misalignment, and looseness occur, the facility vibration frequency shows a pattern different from the normal state in a specific frequency range. This paper presents an N-segmentation anomaly detection method that performs anomaly detection by dividing the entire vibration frequency range into N regions. Experiments on nine kinds of anomaly data with different frequencies and amplitudes using vibration data from a compressor showed better performance when N-segmentation was applied. The proposed method helps materialize them after detecting facility anomalies.
Journal of the Korea Institute of Information and Communication Engineering
/
v.23
no.10
/
pp.1311-1319
/
2019
Currently, the web environment is a commonly used area for sharing information and conducting business. It is becoming an attack point for external hacking targeting on personal information leakage or system failure. Conventional signature-based detection is used in cyber threat but signature-based detection has a limitation that it is difficult to detect the pattern when it is changed like polymorphism. In particular, injection attack is known to the most critical security risks based on web vulnerabilities and various variants are possible at any time. In this paper, we propose a novelty detection technique to detect abnormal state that deviates from the normal state on web-server log dataset(WSLD). The proposed method is a machine learning-based technique to detect a minor anomalous data that tends to be different from a large number of normal data after replacing strings in web-server log dataset with vectors using machine learning-based embedding algorithm.
Lim, Jiyoon;Nam, Sukhyun;Yoo, Jae-Hyoung;Hong, James Won-Ki
KNOM Review
/
v.22
no.3
/
pp.13-19
/
2019
Network anomaly detection is a technology that collects information about flows on a network and detects malicious attacks occurring in a network in real time. In-band Network Telemetry (INT) technology provides more detailed information in real time, that is not provided by existing networks, such as hop latency and queue occupancy. In this paper, we propose the method to implement an anomaly detection system with higher performance by using INT as an input feature of machine learning and verify it through experiments.
승차 공유, 카풀, 렌터카의 이용률이 증가하면서 많은 사용자가 동일한 차량에 로컬 액세스 할 수 있는 시나리오가 더욱 보편화됨에 따라 차량 네트워크에 대한 공격 가능성이 커지고 있다. 차량용 CAN Bus Network에 대한 DoS(Denial of Service), Fuzzy Attack 및 Replay Attack과 같은 공격은 일부 ECU(Electronic Controller Unit) 비활성 및 작동 불능 상태를 유발한다. 에어백, 제동 시스템과 같은 필수 시스템이 작동 불가 상태가 되어 운전자에게 치명적인 결과를 초래할 수 있다. 차량 네트워크 침입 탐지를 위하여 많은 연구가 진행되고 있으나, 기존 화이트리스트를 이용한 탐지 방법은 새로운 유형의 공격이 발생하거나 희소성이 높은 공격일 때 탐지하기 어렵다. 본 논문에서는 인공신경망 기반의 CAN 버스 네트워크 침입 탐지 기법을 제안한다. 제안하는 침입 탐지 기법은 2단계로 나누어 진다. 1단계에서 정상 패킷 분포를 학습한 VAE 모형이 이상 탐지를 수행한다. 이상 패킷으로 판정될 경우, 2단계에서 인코더로부터 추출된 잠재변수와 VAE의 재구성 오차를 이용하여 공격 유형을 분류한다. 분류 결과의 신뢰점수(Confidence score)가 임계치보다 낮을 경우 학습하지 않은 공격으로 판단한다. 본 연구 결과물은 정보보호 연구·개발 데이터 첼린지 2019 대회의 차량 이상징후 탐지 트랙에서 제공하는 정상 및 3종의 차량 공격시도 패킷 데이터를 대상으로 성능을 평가하였다. 실험을 통해 자동차 제조사의 규칙이나 정책을 사전에 정의하지 않더라도 낮은 오탐율로 비정상 패킷을 탐지해 낼 수 있음을 확인할 수 있다.
Journal of the Korean Society of Marine Environment & Safety
/
v.27
no.1
/
pp.127-134
/
2021
In this study, an anomaly detection (AD) algorithm was implemented to detect the failure of a marine air compressor. A lab-scale experiment was designed to produce fault datasets (time-series electric current measurements) for 10 failure modes of the air compressor. The results demonstrated that the temporal pattern of the datasets showed periodicity with a different period, depending on the failure mode. An AD model with a convolutional autoencoder was developed and trained based on a normal operation dataset. The reconstruction error was used as the threshold for AD. The reconstruction error was noted to be dependent on the AD model and hyperparameter tuning. The AD model was applied to the synthetic dataset, which comprised both normal and abnormal conditions of the air compressor for validation. The AD model exhibited good detection performance on anomalies showing periodicity but poor performance on anomalies resulting from subtle load changes in the motor.
기후 시스템에서 지구온난화는 세계적으로 매우 중요한 문제이고 이는 기후변화, 이상기온, 폭우, 가뭄 등의 문제를 초래한다. 특히 사막화는 전 세계적으로 10억 명 이상의 사람들에게 영향을 미치고 있다. 건조한 상태의 식생은 사막화되기 쉽기 때문에 식생의 수분상태는 사막화의 중요한 지표이다. 본 논문에서는 중국과 몽골 사막 주변영역에 대해 식생의 수분상태를 탐지하였다. 식생의 수분상태를 탐지하기 위해 1999년부터 2006년까지의 SPOT/VEGETATION 위성 이미지를 이용하여 정규화 수분지수(NDWI: Normalized Difference Water Index)를 산출하였다. 그 결과 1999년부터 2006년까지의 NDWI는 사막주변영역에서 감소하는 경향을 보였고, 그 영역은 몽골 고비사막 북동지역과 중국 타클라마칸 사막의 남동지역에 위치해 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.