• 제목/요약/키워드: 이상치 판정

검색결과 118건 처리시간 0.027초

규칙기반 및 상관분석 방법을 이용한 시계열 계측 데이터의 이상치 판정 (Outlier Detection in Time Series Monitoring Datasets using Rule Based and Correlation Analysis Method)

  • 전제성;구자갑;박창목
    • 한국지반환경공학회 논문집
    • /
    • 제16권5호
    • /
    • pp.43-53
    • /
    • 2015
  • 본 연구에서는 빅데이터 범주에 포함되는 각종 계측 데이터를 대상으로 각종 이상치를 판단하기 위한 기법을 고안하고, 인공 데이터 및 실 계측 데이터를 이용한 이상치 분석을 수행하였다. 계측결과에 대한 1차 차분 값 및 오차율을 적용한 규칙기반 방법은 큰 규모의 Short fault 분석 및 일정 기간 계측값에 변화가 발생하지 않는 경우의 Constant fault 분석에 효과적으로 적용될 수 있었으나, 독립적인 단일 데이터셋만을 이용하는 관계로 큰 변화폭을 보이는 실 계측 데이터의 정상 데이터를 이상치로 오판하는 문제점이 있었다. 규칙기반 방법을 이용한 Noise fault 분석은 적정 데이터 윈도우 사이즈의 선택 및 이상치 판정용 한계값 선정상의 문제로 인해 실 계측 데이터 적용에 한계가 있었다. 이종 데이터 간 상관분석 방법은 학습 데이터의 적정범위 선정이 선행된다면 장단기 계측 데이터의 이상 거동 및 국부적 이상치 판정에 매우 효과적으로 이용될 수 있음을 알 수 있었다.

농촌유역 홍수관리를 위한 자료처리 요소모듈 개발 (Development of data processing component module for the flood management in an agricultural watershed)

  • 이도길;강문성;박지훈;류정훈
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.289-289
    • /
    • 2016
  • 신뢰성 높은 홍수관리는 경향성 분석, 이상치 판정 등의 전처리를 수행한 입력 자료를 구축하는 것을 필요로 한다. 경향성 분석은 방법에 따라 경향성의 유무가 다르게 나타나기 때문에 하나의 방법으로만 판단하기 어려우며, 이상치 분석은 지역 특성에 따라 기준이 변동하므로 일정한 기준을 적용하기가 어려워 주로 수동으로 이루어지며 이 작업을 완료하는 데에는 많은 시간이 소요된다. 입력 자료 전처리에 수반되는 비용과 시간을 절감하기 위해 이러한 문제점의 개선이 필요한 실정이다. 따라서 본 연구의 목적은 농촌유역 홍수관리를 위한 자료처리 요소 모듈을 개발하는 데 있다. 홍수관리를 위한 자료처리 요소 모듈은 크게 기상자료의 경향성을 분석하는 모듈과 수위자료의 이상치를 탐지하고 판정하는 모듈로 구성하였다. 경향성 분석 모듈은 모수적 방법인 t-test와 비모수적 방법인 Hotelling-Pabst test 및 Mann-Kendall test를 분석 방법으로 제공하여 하나의 입력 자료로 세 가지 방법으로 분석한 결과를 비교할 수 있도록 개발하였다. 이상치 탐지 모듈은 IQR (interquartile range) 규칙과 규칙기반의 방법을 이용한 이상치 탐지를 제공할 수 있도록 개발하였다. 개발된 모듈은 한강 유역의 용당저수지에 적용하여 검정을 실시하였다. 본 연구에서 개발된 농촌유역 홍수관리를 위한 자료처리 요소 모듈은 추후 홍수관리 및 그에 관한 연구를 하는데 있어 활용될 수 있을 것으로 기대된다.

  • PDF

일반국도 상시조사 교통량 자료의 이상치 판정 알고리즘 개발 (The Outlier-Filtering Algorithm for National Highway Continuous Traffic Counts Data)

  • 신재명;이상협;김현석
    • 대한토목학회논문집
    • /
    • 제33권2호
    • /
    • pp.691-702
    • /
    • 2013
  • 본 연구에서는 요일별 교통량 변동 패턴 기반 평활화법을 활용하여 정량적 이상치 판정 알고리즘을 개발하였다. 또한 개발된 알고리즘을 활용하여 2010년 일반국도 상시조사 지점 중 14개 지점의 교통량 자료에 대한 이상치 필터링을 수행하여 알고리즘의 적합성 여부를 평가하였다. 그 결과 정상일 필터링율은 98.2%, 이상일 중 오필터링율은 8.0%로 평가되었다. 따라서 본 연구에서 개발된 알고리즘은 수집된 교통량 자료의 1차적인 이상치 필터링에 충분히 적용 가능할 것이다.

경제조사에서의 이상치 탐지와 처리방법 (Outlier detection and treatment in industrial sampling survey)

  • 주영선;조교영
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권1호
    • /
    • pp.131-142
    • /
    • 2016
  • 통계조사에서 이상치는 총계추정에 큰 영향을 줄 수 있다. 통계조사에서 보고된 값은 극단적이 아니지만 그것의 가중치 (weight)가 커서 추정값에 큰 영향을 주거나, 극단값이라 해도 그것이 작은 가중치를 가질 때 추정에 큰 영향을 주지 않는 경우도 있다. 이러한 극단값이나 추정에 영향을 주는 값 들은 표본조사에서 민감하다. 일반적으로 치우친 분포를 가진 모집단에서 추출된 표본으로 조사를 하는 사업체 조사에서는 특별히 더 큰 영향을 준다. 본 연구에서는, 우리는 이상치를 판별하고 처리하는 방법에 대해서 다루고자 한다. 이상치 판별은 분위수에 기초해서 판정하였으며, 판정된 이상치는 여러 가지 다양한 방법을 적용해 보았다. 연구에서는 2가지 winsorised 방법과 세가지 cut-off 방법에 대하여 적용하였다. 그리고 시뮬레이션에서는 4가지 방법의 가중치를 각각 적용하여 진행하였다. 여러 가지 이상치 처리방법들을 비교해 본 결과 type I 윈저화 방법보다는 type II 윈저화 방법이 효율적인 결과값을 보여주었으며, 가중치 변환방법들 중에서는 제곱근 변환을 통한 가중치 감소방법이 다른 처리방법에 비해 좋은 결과값을 보여주었다.

클러스터링 기반 앙상블 모델 구성을 이용한 이상치 탐지 (Outlier Detection By Clustering-Based Ensemble Model Construction)

  • 박정희;김태공;김지일;최세목;이경훈
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제7권11호
    • /
    • pp.435-442
    • /
    • 2018
  • 이상치 탐지는 정상 데이터 분포를 크게 벗어나는 데이터 샘플을 탐지하는 것을 의미한다. 대부분의 이상치 탐지 방법은 데이터 샘플이 정상 상태를 벗어나는 정도를 나타내는 이상치 지수(outlier score)를 계산하여 주어진 임계값 이상일 때 이상치로 판정한다. 그러나, 데이터마다 이상치 지수의 범위가 다양하고 정상 데이터에 비해 이상치 데이터는 적은 비율로 존재하기 때문에 이상치 지수에 대한 임계값을 결정하기는 매우 어렵다. 또한, 실제 상황에서는 학습에 이용할 수 있는 충분한 양의 이상치를 포함하는 데이터의 획득이 용이하지 않다. 본 논문에서는 정상 데이터가 주어졌을 때 이를 이용하여 정상 데이터 영역을 나타내는 모델을 구성하고 새로운 데이터 샘플에 대해 이상치와 정상치의 이진 분류를 수행하는 방법으로 군집화 기반 이상치 탐지 방법을 제안한다. 그리고, 주어진 정상 데이터를 청크로 나누고 각 청크에 대해 클러스터링 모델을 구성한 후 모델들에 의한 이상치 판정 결과를 결합하는 앙상블 방법과 동적 변화가 있는 스트리밍 데이터에서의 적용 방법으로 확장한다. 실제 데이터와 인공 데이터를 이용한 실험결과는 제안 방법의 높은 성능을 보여준다.

군집 알고리즘을 이용한 순차적 이상치 탐지법 (A sequential outlier detecting method using a clustering algorithm)

  • 서한손;윤민
    • 응용통계연구
    • /
    • 제29권4호
    • /
    • pp.699-706
    • /
    • 2016
  • 검정절차가 생략된 이상치 탐지법은 구조적으로 수렁효과나 가면효과에 취약하기 때문에 다수의 이상치를 제대로 탐지하지 못할 때가 있다. 본 연구에서는 군집화에 의하여 구분된 소수 관찰치군을 이상치로 판정하는 방법에 보완될 검정절차를 다룬다. 이에 관련된 일반적인 방법은 탐지된 이상치 후보군의 개별적인 관찰치에 대해 다양한 종류의 t-검정을 수행하는 것이다. 본 연구에서는 이상치 후보군에 대한 검정을 수행하고 군집나무의 절단기준을 변경시켜 새로운 이상치군을 탐색해 나가는 순차적인 방법을 제안한다. 예제와 모의실험을 통해 제시된 방법과 기존의 방법들을 비교한다.

다수 계측 데이터에 대한 복합 이상치 평가 및 검증 (Compound Outlier Assessment and Verification for Multiple Field Monitoring Data)

  • 전제성
    • 한국지반환경공학회 논문집
    • /
    • 제19권1호
    • /
    • pp.5-14
    • /
    • 2018
  • 건설 현장에서 생산되는 각종 계측 데이터 내에는 다양한 원인에서 생성된 각종 이상 데이터가 포함되어 있다. 본 연구에서는 시계열 데이터 내에 포함된 이상 데이터의 효과적 판정을 위한 합성신호 생성 기법과 그를 이용한 회귀분석, 최종적인 이상 데이터 판단과 평가 등에 관한 연구를 수행하였다. 방대한 데이터로 구성된 다수 데이터셋에 대한 이상 데이터 평가 시 다수의 데이터셋 간의 상관성을 가중치로 한 합성신호는 특정 데이터셋 과의 상관성을 크게 향상 시키는 효과를 보였으며, 이를 통해 효과적인 이상 데이터 판정이 가능하였다. 인위적 이상 데이터가 포함된 인공 오류 데이터를 생성하고 이에 합성신호 기법을 적용한 결과, 이상 데이터 판정 정확도가 크게 증가 하였으며 이러한 결과는 이종 시계열 모델의 경우에서도 동일하게 확인되었다. 이상 데이터 판정의 정확도는 신호 합성에 이용되는 데이터셋 수가 많고 시계열 모델 특성이 유사할수록 크게 증가하였다.

건설 계측 데이터에 대한 통합 이상치 분석 시스템 개발 (Development of Integrated Outlier Analysis System for Construction Monitoring Data)

  • 전제성
    • 한국지반환경공학회 논문집
    • /
    • 제21권5호
    • /
    • pp.5-11
    • /
    • 2020
  • 구조물의 이상징후 판단 및 장단기 안정성, 장래 거동 등의 판단에 다양한 계측결과가 효율적으로 이용되기 위해서는 계측 데이터 내에 포함한 각종 이상치의 판정 및 제거가 필요하다. 본 연구에서는 장기 시계열 데이터에 대한 이상치 평가를 수행하기 위한 통합 이상치 분석 시스템을 개발하였다. 이상치 평가는 시계열 분석법에 의한 단일 데이터셋 대상의 1차 이상치 분석과 합성신호 기반의 다중 데이터셋에 대한 2차 이상치 분석으로 구분하여 단계별로 수행되었다. 통합 이상치 분석 시스템은 구조물에 대한 종합 안전관리 플랫폼과 실시간 연동되어 구조물의 각종 안전성 평가 및 거동 예측 등을 위한 기초자료를 제공할 수 있도록 개발되었다. 현장 적용을 통해 일정 경향을 보이는 동종의 다수 센서들의 합성신호와 개별 데이터셋 간의 상관성이 크게 증가함을 확인할 수 있었으며, 상관성에 대한 가중치 적용을 통해 차별 거동을 보이는 다양한 센서 계측치들도 모두 통합 이상치 분석에 활용될 수 있음을 확인 할 수 있었다.

통행시간 추정을 위한 Voting Rule과 중위절대편차법 기반의 복합 필터링 모형 (Combined Filtering Model Using Voting Rule and Median Absolute Deviation for Travel Time Estimation)

  • 정영제;박현석;김병화;김영찬
    • 한국ITS학회 논문지
    • /
    • 제12권6호
    • /
    • pp.10-21
    • /
    • 2013
  • 본 연구에서는 교통정보시스템에서 통행시간의 이상치 자료를 제거하기 위한 복합 필터링 모형을 제시하였으며, 이는 중위절대편차법과 Voting Rule을 기반으로 하는 이중화된 필터링 모형에 해당한다. 본 모형은 중위절대편차법을 이용해 표본을 정규분포화 시키기 위한 1차 필터링을 수행하며, 이후 Voting Rule을 이용해 중위절대편차법의 적용 이후에도 남아 있는 이상치 자료를 제거하는 방식에 해당한다. 이때 Voting Rule은 표본의 통행시간과 평균통행시간의 차이가 임계치를 초과하는 경우 해당 표본을 이상치로 판정하며, 다수결의 원칙을 이용하여 이상치 자료의 비율에 따라 이상치에 대한 제거 여부를 결정한다. 일반국도 3호선의 경기도 광주시 구간을 대상으로 한 사례분석을 통해 복합 필터링 모형이 이상치 표본 만을 선택적으로 제거하여 통행시간 추정의 정확도 개선에 기여할 수 있음을 확인하였다.

Comparative Analysis of Anomaly Detection Models using AE and Suggestion of Criteria for Determining Outliers

  • Kang, Gun-Ha;Sohn, Jung-Mo;Sim, Gun-Wu
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권8호
    • /
    • pp.23-30
    • /
    • 2021
  • 본 연구에선 제조 공정에서의 양/불량 판정을 위한 오토인코더(AE) 기반의 이상 탐지 방법들의 비교 분석과 우수한 성능을 보인 이상치 판별 기준을 제시한다. 제조 현장의 특성상 불량 데이터의 수는 적고, 불량의 형태가 다양하다. 이러한 특성은 정상과 비정상 데이터를 모두 활용하는 인공지능 기반 양/불량 판정 모델의 성능을 저하시키고, 성능 향상을 위한 비정상 데이터의 추가 확보에 시간과 비용을 발생시킨다. 이러한 문제를 해결하기 위해서 정상 데이터만을 이용해 이상 탐지를 수행하는 AE, VAE 등 AE 기반의 모델에 관한 연구들이 진행되고 있다. 본 연구에서는 Convolutional AE, VAE, Dilated VAE 모델을 기반으로 잔차 이미지에 대한 통계치와 MSE, 정보 엔트로피를 이상치 판별 기준으로 선정하여 각 모델의 성능을 비교 분석했다. 특히 Convolutional AE 모델에 대해서 범위 값을 적용했을 때, AUC PRC 0.9570, F1 Score 0.8812, AUC ROC 0.9548, 정확도 87.60%의 가장 우수한 성능을 보였다. 이는 기존의 이상치 판별 기준으로 자주 사용되었던 MSE에 비해 정확도 기준 약 20%P(Percentage Point)의 성능 향상을 보이며, 이상치 판별 기준에 따른 모델 성능 향상이 가능함을 확인하였다.