• Title/Summary/Keyword: 이상유동 입자영상유속계

Search Result 43, Processing Time 0.034 seconds

On the Measurement Technique of Void Fraction by Single Camera Two Phase PIV (단일 카메라 입자영상유속계를 이용한 이상유동 기포율 측정방법)

  • Choi, Dong-Whan;Sung, Jae-Yong;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1558-1563
    • /
    • 2004
  • A measurement technique for the void fraction and the bubble dynamics in gas-liquid two-phase flows has been proposed using a time-resolved two-phase PIV system. For the three-dimensional evaluation of the bubble information, both the images from the front and side views are simultaneously recorded into a high speed CCD camera by reflecting the side image into the front view with the help of a $45^{\circ}$ oriented mirror. Then, a stereo-matching technique is applied to calculate the void fraction, bubble size and shape. To obtain the rising bubble velocities, the 2-frame PTV method was applied. Consequently, the present technique shows good feasibility for the measurements of the volume fractions, mean diameters, aspect ratios and velocities of the bubbles at the three-dimensional point of view.

  • PDF

Hybrid Particle Image Velocimetry Based on Affine Transformation (어파인변환 기반 하이브리드 PIV)

  • Doh, Deog-Hee;Cho, Gyong-Rae;Lee, Jae-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.6
    • /
    • pp.603-608
    • /
    • 2011
  • Since PTV (particle tracking velocimetry) provides velocity vectors by tracking each particle in a fluid flow, it has significant benefits when used for nano- and bio-fluid flows. However, PTV has only been used for limited flow fields because interpolation data loss is inevitable in PTV in principle. In this paper, a hybrid particle image velocimetry (PIV) algorithm that eliminates interpolation data loss was constructed by using an affine transformation. For the evaluation of the performance of the constructed hybrid PIV algorithm, an artificial image test was performed using Green-Taylor vortex data. The constructed algorithm was tested on experimental images of the wake flow (Re = 5,300) of a rectangular body ($6cm\;{\times}3cm$), and was demonstrated to provide excellent results.

Simple Image-Separation Method for Measuring Two-Phase Flow of Freely Rising Single Bubble (상승하는 단일 버블 이상유동의 PIV 계측을 위한 영상분리기법)

  • Park Sang-min;Jin Song-wan;Kim Won-tae;Sung Jae-yong;Yoo Jung-Yul
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.7-10
    • /
    • 2002
  • A novel two-phase PIV algorithm using a single camera has been proposed, which introduces a method of image-separation into respective phase images, and is applied to freely rising single bubble. Gas bubble, tracer particle and background each have different gray intensity ranges on the same image frame when reflection and dispersion in the phase interface are intrinsically eliminated by optical filters and fluorescent material. Further, the signals of the two phases do not interfere with each other. Gas phase velocities are obtained from the separated bubble image by applying the two-frame PTV. On the other hand, liquid phase velocities are obtained from the tracer particle image by applying the cross-correlation algorithm. Moreover, in order to increase the SNR (signal-to-noise ratio) of the cross-correlation of tracer particle image, image enhancement is employed.

  • PDF

Flow Characteristics around Underwater Triangular Structure with Different Inclination (경사도가 다른 수중 삼각형상구조물 주위의 유동특성)

  • Choe, Sang-Bom;Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.2
    • /
    • pp.241-246
    • /
    • 2014
  • The purpose of this study is to investigate the flow characteristics around underwater triangular structure with various inclination and Reynolds number. A flow fields around the triangular structure model were measured by visualization method and PIV in the circulating water channel. The result of the experiment is where the triangular structure that has a inclination of $45^{\circ}$ and the reynolds number at $Re=2.9{\times}10^3$ showed rising velocity component to 2.7 times of the structure height. When the reynolds number is steady and when the inclination is greater the descending velocity component of the structure's rears current form is greatly shown and for the areas where it's more than y/hs=1.75 has a change in the angle of inclination but it doesn't give a great effect to it.

Advanced Flow Visualization Technologies and Blue Ocean Strategy (첨단 유동가시화 기법들과 Blue Ocean 전략)

  • Lee, Sang-Joon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.145-146
    • /
    • 2006
  • Recently, the next-generation advanced flow visualization techniques such as holographic PIV, dynamic PIV, echo-PIV, micro/nano-PIV, and X-ray PIV have been introduced. These advanced measurement techniques have a big potential as the core technology for analyzing outmost thermo-fluid flows in future. These would be indispensable in solving complicated thermo-fluid flow problems not only in the industrial fields such as automotive, space, electronics, aero- and hydro-dynamics, steel, and information engineering, but also in the research fields of medical science, bio-medical engineering, environmental and energy engineering etc. Especially, NT (Nano Technology) and BT (Bio Technology) strongly demand these advanced measurement techniques, because it is impossible for conventional measurement methods to observe most complicated nano- and bio-fluidic phenomena. In this presentation, the basic principle of these high-tech flow visualization techniques and their practical applications which cannot be resolved by conventional methods, such as blood flows in a micro-tube, in vivo analysis of micro-circulation, and flow around a living body will be introduced as a blue ocean strategy.

  • PDF

Advanced Flow Visualization Technologies and Blue Ocean Strategy (첨단 유동가시화 기법들과 Blue Ocean 전략)

  • Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.4 no.2
    • /
    • pp.3-5
    • /
    • 2006
  • Recently, the next-generation advanced flow visualization techniques such as holographic PIV, aynni.c PIV, echo-PIV, micro/nano-PIV, and X-ray PIV have been introduced. These advanced mea-surement techniques have a big potential as the core technology for analyzing outmost thermo-fluid flows in future. They would be indispensable in solving complicated thermo-fluid flow problems not only in industrial fields such as automotive, space, electronics, aero- and hydro-dynamics. steel, and information engineering, but also in the research fields of medical science, bio-medical engineering, environmental and energy technology etc. Especially, NT (Nano Technology) and BT (Bio Technology) strongly demand these advanced measurement techniques, because it is impossible for conventional measurement methods to observe the nano- and bio-fluidic flow phenomena. In this article, the basic principle of these high-tech flow visualization techniques and their practical applications which cannot be resolved by conventional methods, such as blood flows in a micro-tube, in vivo analysis of micro-circulation, and flow around a living body are introduced as a blue ocean strategy.

  • PDF

A Study on the Ultrasonic Effect for Turbulence Enhancement in the Flow Field of a Coaxial Circular Pipe (동심원관 유동장에서 난류증진을 위한 초음파 영향에 관한 연구)

  • Song, Min-Geun;Koo, Ja-Hoon;Lee, Sang-Bum;Son, Seung-Woo;Ju, Eun-Sun
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.742-747
    • /
    • 2001
  • A study on the ultrasonic effect for turbulence enhancement is carried out in the horizontal flow field of a coaxial circular pipe. A large transparent acryl tank is made to perform several experiments for the above research. The front flow field from jet exit is divided as 4 measuring regions to observe characteristics of the above flow field according to those with and without ultrasonic. An ultrasonic transducer with 2MHz high frequency is used to give them the ultrasonic forcing. Characteristics such as the velocity distribution, the kinetic energy and the turbulence intensity are visualized, observed, examined and considered at Re No. 2000. In results, it is clarified that the ultrasonic increases the turbulence enhancement. And the optimum and harmonious intensity suited to the power of flow is needed to maximize the turbulence enhancement.

  • PDF

A Study on the Turbulence Enhancement of Jet Flow by the Ultrasonic Forcing in a Coaxial Circular Pipe (동심원관내에서 초음파가진에 의한 제트유동의 난류증진에 관한 연구)

  • Ju, E.S.;Lee, Y.H.;Song, M.G.;Lee, S.B.;Son, S.W.
    • Journal of Power System Engineering
    • /
    • v.5 no.3
    • /
    • pp.31-37
    • /
    • 2001
  • A study to obtain the enhancement of turbulence at low Reynolds number is carried out by adding ultrasonic force into the jet flow field of a coaxial circular pipe which can afford the sufficient data of flow characteristics with the shear flow and turbulence flow in spite of its simple shape. A coaxial circular flow field is made vertically in a large and transparent acryl tank. The time mean velocity vector, distribution, kinetic energy and turbulence intensity formed in the complex flow field of turbulence enhancement are investigated, observed and discussed at Reynolds number of 2,000, 3,000 and 5,000 by using PIV measurement, in results, the validity of ultrasonic to obtain the enhancement of turbulence is certified.

  • PDF

Quantitative Visualization of Ventilation Flow for Defrost Mode in a Real Passenger Car (제상모드에 대한 실차 내부 환기유동의 정량적 가시화 연구)

  • Lee, Jin-Pyung;Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.2
    • /
    • pp.40-44
    • /
    • 2010
  • Thermal comfort inside a passenger car has been receiving large attention in automobile industries. Especially, the performance of windshield defroster is important in the design of a car to ensure passenger comport and safety. Thereby, better understanding on the ventilation flow along the vehicle windshield is essential to evaluate the performance of windshield defroster. However, most previous studies dealt with the defrost flow using CFD (computational fluid dynamics) calculations or scale-down model experiments. In this study, a real commercial automobile was used to investigate the flow discharged from the vehicle defroster and the ventilation flow along the windshield using a PIV velocity field measurement technique. The experimental data would be useful to understand the flow characteristics in detail and also can be used to validate numerical predictions.