• Title/Summary/Keyword: 이상신호 모델링

Search Result 97, Processing Time 0.023 seconds

Development of a GNSS Signal Generator Considering Reception Environment of a Vehicle (이동체의 수신 환경을 고려한 GNSS 신호 생성기 개발)

  • Cho, Sung Lyong;Park, Chansik;Hwang, Sang Wook;Choi, Yun Sub;Lee, Ju Hyun;Lee, Sang Jeong;Pack, Jeong-Ki;Lee, Dong-Kook;Jee, Gyu-In
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.9
    • /
    • pp.811-820
    • /
    • 2012
  • GNSS signal is vulnerable to jamming signal because of well-known signal structure and weak signal power. For these reasons, the need for analysis of jamming effects and anti-jamming techniques of is increasing. In this paper, a GNSS signal generator is designed which includes a radio wave propagation model for six kind of tactical environments and a body masking model for the reception environment of a vehicle. The radio wave propagation model for downtown, rural, forest, coastline, waste land and snow or ice area is designed using two-ray model. The body masking model is designed the effect which the antenna is affected by the reception environment of a vehicle and radiation pattern from a user configuration. The performance of generated signals from the GNSS signal generator considering reception environment of a vehicle is evaluated by a commercial GPS L1 receiver(NordNav) in normal and jamming environment. Also, the generated GNSS signal is compared to a commercial GPS L1 H/W based RF signal generator(STR4500). The results show that the designed GNSS signal generator in a normal environment compared to the same navigation performance. In jamming environment, it is shown that the body masking effect and GNSS signal acquisition and tracking loss in compliance with the jamming signal are precisely working in the reception environment of a vehicle.

4 and 7 Element GPS Anti-jamming Algorithm Performance Analysis Considering the Relative Arrangement of the Multiple Jammers (비행체의 자세와 GPS 재머의 상대적인 배치상태를 고려한 4소자 및 7소자 항재밍장치에 대한 성능분석)

  • Choi, Jae-Gun
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.3
    • /
    • pp.218-225
    • /
    • 2016
  • Null steering and beam steering are known well as anti-jamming methods in GPS anti-jamming system. Null steering gets a noise attenuation effect for the direction of jamming and beam steering earns additional gain synthesis for the direction of satellite signals. According to the research in the article for signal processing, it expresses that the N array antenna is effective for N-1 number of jamming signal by math public interest, however, the two algorithms analysis is not unknown for the operating condition of the realistic vehicle. In this paper, we modeled anti-jamming system using 4 and 7 array antenna and showed the two algorithms performance (PM, LCMV) when considering the number of antenna array, jammers and vehicle position (horizontal, vertical). In result, we showed that the case of vertical position of the vehicle which has large tilt angle for the relative position of satellites and jammers, has about 10 dB gain more in comparison with one of vertical position in spite of same JSR condition.

Smart HCI Based on the Informations Fusion of Biosignal and Vision (생체 신호와 비전 정보의 융합을 통한 스마트 휴먼-컴퓨터 인터페이스)

  • Kang, Hee-Su;Shin, Hyun-Chool
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.4
    • /
    • pp.47-54
    • /
    • 2010
  • We propose a smart human-computer interface replacing conventional mouse interface. The interface is able to control cursor and command action with only hand performing without object. Four finger motions(left click, right click, hold, drag) for command action are enough to express all mouse function. Also we materialize cursor movement control using image processing. The measure what we use for inference is entropy of EMG signal, gaussian modeling and maximum likelihood estimation. In image processing for cursor control, we use color recognition to get the center point of finger tip from marker, and map the point onto cursor. Accuracy of finger movement inference is over 95% and cursor control works naturally without delay. we materialize whole system to check its performance and utility.

A Study on Geophysical Characteristics and Regional Geological Structures of the Southwestern Yellow Sea of Korea using Gravity and Magnetic Data (중력 및 자력자료를 이용한 황해 남서부해역의 지구물리학적 특성 및 광역 지구조 연구)

  • Kim, Chang-Hwan;Park, Chan-Hong
    • Journal of the Korean earth science society
    • /
    • v.31 no.3
    • /
    • pp.214-224
    • /
    • 2010
  • Gravity and Magnetic survey data were analyzed to investigate the geophysical characteristics and regional geological structures of the southwestern Yellow Sea. The set of data about the southwestern part of the Yellow Sea in Korea was one collected by the Korea Ocean Research and Development Institute (KORDI) in 2003, 2004, and 2005. The Yellow Sea has a few basins and the study area also includes parts of the Heuksan Basin and the East China Sea Basin. The bathymetry of the study area ranges from about ?40 m southwestward near China to about 150 m northeastward near Korea. The bathymetry has the gentle rise and fall and the smooth slope. The gravity anomalies, from sea surface gravity and satellite gravity data, reflect the basement rocks rather than the smooth bathymetry. The gravity anomalies are higher on Northeastern part of the study area and lower over the South of the Heuksan Basin. The analytic signal from the Bouguer anomaly shows higher anomalous zones near the boundaries of the basins. The magnetic anomalies and the analytic signal, from the magnetic data, suggest that the complex anomalies on the Northern part are attributed to the volcanic intrusions and that the smooth patterns in the Southern part are based on the lack of the intrusions. The power spectrum analysis of the Bouguer anomalies and the magnetic anomalies indicate that the depth to the Moho discontinuity varies from about 30.2 to 28.3 km and that the depths of the basement rocks and the Eocene discontinuity range from about 8.4 to 8 km and from about 1.5 to 1.7 km, respectively. The inversion of the Bouguer anomaly shows that the Moho depth to the Western part of the study area near China is slightly deeper than the Eastern part near Korea. The result of 2-D gravity modeling has a good coherence with the results of the analytic signal, the power spectrum analysis, and the inversion.

Frequency Sounding in Small-Loop EM Surveys (소형루프 전자탐사법에서의 주파수 수직탐사)

  • Cho In-Ky;Lim Jin-Taik
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.3
    • /
    • pp.119-125
    • /
    • 2003
  • The small-loop electromagnetic (EM) technique has been used successfully for many geophysical investigations, particularly for shallow engineering and environmental surveys. In conventional small loop EM operating at small induction numbers, geometric sounding has been widely used because the depth of penetration of EM energy depends only on the source-receiver separation. Recently developed small loop EM system, however, measures the secondary magnetic field, $H^S$, at multiple frequencies with a fixed source-receiver separation and frequency sounding is tried actively. In this study, we analyzed the behavior of in-phase and quadrature components of ${H^S}_z$, for horizonal coplanar (HCP) configuration over two-layer models. Through this theoretical analysis, it was found that the in-phase component of ${H^S}_z$ is more suitable for frequency sounding than the quadrature component. But, the in-phase component of ${H^S}_z$ is too small to measure, especially in resistive and noisy environment like Korea. Using the fact that the quadrature component is much greater than the in-phase component and the difference of quadrature component of ${H^S}_z$ measured at two frequencies shows the same behavoir as the in-phase component, we suggested an alternative frequency sounding technique. Also, we defined an apparent conductivity, which reflects well the conductivity of subsurface layers.

Closed Integral Form Expansion for the Highly Efficient Analysis of Fiber Raman Amplifier (라만증폭기의 효율적인 성능분석을 위한 라만방정식의 적분형 전개와 수치해석 알고리즘)

  • Choi, Lark-Kwon;Park, Jae-Hyoung;Kim, Pil-Han;Park, Jong-Han;Park, Nam-Kyoo
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.182-190
    • /
    • 2005
  • The fiber Raman amplifier(FRA) is a distinctly advantageous technology. Due to its wider, flexible gain bandwidth, and intrinsically lower noise characteristics, FRA has become an indispensable technology of today. Various FRA modeling methods, with different levels of convergence speed and accuracy, have been proposed in order to gain valuable insights for the FRA dynamics and optimum design before real implementation. Still, all these approaches share the common platform of coupled ordinary differential equations(ODE) for the Raman equation set that must be solved along the long length of fiber propagation axis. The ODE platform has classically set the bar for achievable convergence speed, resulting exhaustive calculation efforts. In this work, we propose an alternative, highly efficient framework for FRA analysis. In treating the Raman gain as the perturbation factor in an adiabatic process, we achieved implementation of the algorithm by deriving a recursive relation for the integrals of power inside fiber with the effective length and by constructing a matrix formalism for the solution of the given FRA problem. Finally, by adiabatically turning on the Raman process in the fiber as increasing the order of iterations, the FRA solution can be obtained along the iteration axis for the whole length of fiber rather than along the fiber propagation axis, enabling faster convergence speed, at the equivalent accuracy achievable with the methods based on coupled ODEs. Performance comparison in all co-, counter-, bi-directionally pumped multi-channel FRA shows more than 102 times faster with the convergence speed of the Average power method at the same level of accuracy(relative deviation < 0.03dB).

Thermal Memory Effect Modeling and Compensation in Doherty Amplifier (Doherty 증폭기의 열 메모리 효과 모델링과 보상)

  • Lee Suk-Hui;Lee Sang-Ho;Bang Sung-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.9 s.339
    • /
    • pp.49-56
    • /
    • 2005
  • Memory effect, which influence the performance of Doherty amplifier, become more significant and critical in designing these circuits as the modulation signal bandwidth and operation power level increase. This paper reports on an attempt to investigate, model and quantity the contribution of the electrical nonlinearity effects and the thermal memory effects to a Doherty amplifier's distortion generation. Also this raper reports on the development of an accurate dynamic expression of the instantaneous junction temperature as a function of the instantaneous dissipated power. This expression has been used in the construction of an electrothermal model for the Doherty amplifier. Parameters for the nelv proposed behavior model were determined from the Doherty amplifier measurements obtained under different excitation conditions. This study led us to conclude that the effects of the transistor self-heating phenomenon are important for signals with wideband modulation bandwidth(ex. W-CDMA or UMTS signal). Doherty amplifier with electrothermal memory effect compensator enhanced ACLR performance about 20 dB than without electrothemal memory effect compensator. Experiment results were mesured by 60W LDMOS Doherty amplifier and electrothermal memory effect compensator was simulated by ADS.

Analysis of Wavelength Conversion Characteristics in SSGDBR Laser Diode (SSGDBR 레이저 다이오드의 파장변환 특성 해석)

  • Kim, Su-Hyun;Chung, Young-Chul
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.2
    • /
    • pp.81-89
    • /
    • 1999
  • Among various wavelength conversion technologies, that using the cross-gain modulation in laser diode makes it possible to deal with the high speed signal quite simply and efficiently. In this paper, presented was the applicability of an improved time-domain large-signal dynamic model as a CAD tool to analyzed the characteristics of SSGDBR(Superstructure Grating Distributed Bragg Reflector) laser diodes used for wavelength converters. Using this model, it was shown that this kind of wavelength converter can provide the widely tunable wavelength conversion of the high speed data above 10 Gbps. We also investigated the effect of input optical power and the bias current on the characteristics of the device such as extinction ration and eye diagram. The modeling results show very similar trend to the experimental reports.

  • PDF

A Study on Interference between High Voltage Impulse Track Circuit(HVITC) and AF Track Circuit (고전압임펄스궤도회로(HVITC)와 AF 궤도회로간의 간섭에 대한 연구)

  • Lee, Hee-Jin;Lee, Jong-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.3
    • /
    • pp.232-240
    • /
    • 2015
  • Two types of track circuits are used in high speed railway car depots: one is High Voltage Impulse Track Circuit(HVITC); the other is AF track circuit. HVITC detects train occupation of blocks and broken rail; the AF track circuit is used for train onboard control system pretesting before departure. This testing is used to transmit train control information through the AF track circuit. The two systems are switched in turns for testing. We propose a system in which the AF track circuit is replaced by a loop cable that is installed on the inside rail; as such, engineers do not need to switch the systems. In cases in which the two systems run simultaneously, mutual interference may occur. In this paper, we identified this mutual interference by modeling of the two circuits.

2.4kbps Speech Coding Algorithm Using the Sinusoidal Model (정현파 모델을 이용한 2.4kbps 음성부호화 알고리즘)

  • 백성기;배건성
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.3A
    • /
    • pp.196-204
    • /
    • 2002
  • The Sinusoidal Transform Coding(STC) is a vocoding scheme based on a sinusoidal model of a speech signal. The low bit-rate speech coding based on sinusoidal model is a method that models and synthesizes speech with fundamental frequency and its harmonic elements, spectral envelope and phase in the frequency region. In this paper, we propose the 2.4kbps low-rate speech coding algorithm using the sinusoidal model of a speech signal. In the proposed coder, the pitch frequency is estimated by choosing the frequency that makes least mean squared error between synthetic speech with all spectrum peaks and speech synthesized with chosen frequency and its harmonics. The spectral envelope is estimated using SEEVOC(Spectral Envelope Estimation VOCoder) algorithm and the discrete all-pole model. The phase information is obtained using the time of pitch pulse occurrence, i.e., the onset time, as well as the phase of the vocal tract system. Experimental results show that the synthetic speech preserves both the formant and phase information of the original speech very well. The performance of the coder has been evaluated in terms of the MOS test based on informal listening tests, and it achieved over the MOS score of 3.1.