• Title/Summary/Keyword: 이상신호 모델링

Search Result 97, Processing Time 0.023 seconds

A novel approach to the classification of ultrasonic NDE signals using the Expectation Maximization(EM) and Least Mean Square(LMS) algorithms (Expectation Maximization (EM)과 Least Mean Square(LMS) algorithm을 이용하여 초음파 비파괴검사 신호의 분류를 하기 위한 새로운 접근법)

  • Daewon Kim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.1
    • /
    • pp.15-26
    • /
    • 2003
  • Ultrasonic inspection methods are widely used for detecting flaws in materials. The signal analysis step plays a crucial part in the data interpretation process. A number of signal processing methods have been proposed to classify ultrasonic flaw signals. One of the more popular methods involves the extraction of an appropriate set of features followed by the use of a neural network for the classification of the signals in the feature space. This paper describes an alternative approach which uses the least mean square (LMS) method and expectation maximization (EM) algorithm with the model based deconvolution which is employed for classifying nondestructive evaluation (NDE) signals from steam generator tubes in a nuclear power plant. The signals due to cracks and deposits are not significantly different. These signals must be discriminated to prevent from happening a huge disaster such as contamination of water or explosion. A model based deconvolution has been described to facilitate comparison of classification results. The method uses the space alternating generalized expectation maximization (SAGE) algorithm In conjunction with the Newton-Raphson method which uses the Hessian parameter resulting in fast convergence to estimate the time of flight and the distance between the tube wall and the ultrasonic sensor Results using these schemes for the classification of ultrasonic signals from cracks and deposits within steam generator tubes are presented and showed a reasonable performances.

  • PDF

Modeling and Analysis of Power Consumed by System Bus for Multimedia SoC (멀티미디어 SoC용 시스템 버스의 소비 전력 모델링 및 해석)

  • Ryu, Che-Cheon;Lee, Je-Hoon;Cho, Kyoung-Rok
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.11
    • /
    • pp.84-93
    • /
    • 2007
  • This paper presents a methodology that accelerates estimating the system-level power consumption for on-chip bus of SoC platforms. The proposed power modeling can estimate the power consumption according to the change of a target SoC system. The proposed model comprises two parts: the one is power estimation of bus logics reflecting the architecture of the bus such as the number of bus layers, the other is to estimate the power consumed by the bus lines during data transmission. We designed the target multimedia SoC system, MPEG encoder as an example and evaluated power consumption using this model. The simulation result shows that the accuracy of the proposed model is over 92%. Thus, the proposed power model can be used to design of a high-performance/low-power multimedia SoC.

Light-weight Signal Processing Method for Detection of Moving Object based on Magnetometer Applications (이동 물체 탐지를 위한 자기센서 응용 신호처리 기법)

  • Kim, Ki-Taae;Kwak, Chul-Hyun;Hong, Sang-Gi;Park, Sang-Jun;Kim, Keon-Wook
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.6
    • /
    • pp.153-162
    • /
    • 2009
  • This paper suggests the novel light-weight signal processing algorithm for wireless sensor network applications which needs low computing complexity and power consumption. Exponential average method (EA) is utilized by real time, to process the magnetometer signal which is analyzed to understand the own physical characteristic in time domain. EA provides the robustness about noise, magnetic drift by temperature and interference, furthermore, causes low memory consumption and computing complexity for embedded processor. Hence, optimal parameter of proposal algorithm is extracted by statistical analysis. Using general and precision magnetometer, detection probability over 90% is obtained which restricted by 5% false alarm rate in simulation and using own developed magnetometer H/W, detection probability over 60~70% is obtained under 1~5% false alarm rate in simulation and experiment.

Data Modeling for Cell-Signaling Pathway Database (세포 신호전달 경로 데이타베이스를 위한 데이타 모델링)

  • 박지숙;백은옥;이공주;이상혁;이승록;양갑석
    • Journal of KIISE:Databases
    • /
    • v.30 no.6
    • /
    • pp.573-584
    • /
    • 2003
  • Recent massive data generation by genomics and proteomics requires bioinformatic tools to extract the biological meaning from the massive results. Here we introduce ROSPath, a database system to deal with information on reactive oxygen species (ROS)-mediated cell signaling pathways. It provides a structured repository for handling pathway related data and tools for querying, displaying, and analyzing pathways. ROSPath data model provides the extensibility for representing incomplete knowledge and the accessibility for linking the existing biochemical databases via the Internet. For flexibility and efficient retrieval, hierarchically structured data model is defined by using the object-oriented model. There are two major data types in ROSPath data model: ‘bio entity’ and ‘interaction’. Bio entity represents a single biochemical entity: a protein or protein state involved in ROS cell-signaling pathways. Interaction, characterized by a list of inputs and outputs, describes various types of relationship among bio entities. Typical interactions are protein state transitions, chemical reactions, and protein-protein interactions. A complex network can be constructed from ROSPath data model and thus provides a foundation for describing and analyzing various biochemical processes.

An Enhancement of Speaker Location System Using the Low-frequency Phase Restoration Algorithm and Its Implementation (저주파 위상 복원 알고리듬을 이용한 화자 위치 추적 시스템의 성능 개선과 구현)

  • 이학주;차일환;윤대희;이충용
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.22-28
    • /
    • 2001
  • This paper describes the implementation of a robust speaker position location system using the voice signal received by microphone array. To be robust to the reverberation which is the major factor of the performance degradation, low-frequency phase restoration algorithm which eliminates the influence of reverberations using the low-frequency information of the CPSP function is proposed. The implemented real-time system consists of a general purpose DSP (TMS320C31 of Texas instruments), analog part which contains amplifiers and filters, and digital part which is composed of the external memory and 12-bit A/D converter. In the real conference room environment, the implemented system that was constructed by the proposed algorithms showed better performance than the conventional system. The error of the TDOA estimation reduced more than 15 samples.

  • PDF

Analysis of Comparisons of Estimations and Measurements of Loran Signal's Propagation Delay due to Irregular Terrain (Loran 신호의 지형에 의한 전파 지연 예측 및 실측 비교 분석)

  • Yu, Dong-Hui
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.2
    • /
    • pp.107-112
    • /
    • 2011
  • Several developed countries have been developing their own satellite navigation systems, such as Europe's Galileo, China's BEIDOU, and Japan's QZSS, to cope with clock errors and signal vulnerabilities of GPS. In addition, modernization of Loran, eLoran, for GPS backup has been conducted. In Korea, a dependent navigation system has been required and for GPS backup, the need for utilization of time synchronization infrastructure through the modernization of Loran has been raised. Loran signal uses 100Khz groundwave. A significant factor limiting the ranging accuracy of the Loran signal is the ASF arising from the fact that the groundwave signal is likely to propagate over paths of varying conductivity and topography. Thus, an ASF compensation method is very important for Loran and eLoran navigation. This paper introduces the propagation delay model and then compares and analyzes the estimations from the propagation delay model and measured ASFs.

A Study on the Analysis of Radar System Phase Noise Effects in Clutter Cancellation (클러터 제거에서의 레이다 시스템 위상잡음 영향분석에 관한 연구)

  • Lee, Jong-Gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.3
    • /
    • pp.452-458
    • /
    • 2007
  • Since there are very strong clutter returns in an airborne weather radar used for the detection of low altitude weather hazards, the reliable weather data cannot be extracted from the weak Doppler weather signal without cancellation of these strong clutter returns. However, the system phase noise spreads both the clutter and Doppler signal and causes the serious problems in the efficient clutter cancellation. Therefore, in this paper, the phase noise effects on the clutter and Doppler weather signal were analyzed. The system phase noise model was suggested and the effects were derived and explained using this phase noise model. It can be shown that there exists the limit in the clutter cancellation capability to improve the signal-to-clutter ratio (SCR) due to the system phase noise. It may be prominent especially in the low SCR situations.

Classification of Ultrasonic NDE Signals Using the Expectation Maximization (EM) and Least Mean Square (LMS) Algorithms (최대 추정 기법과 최소 평균 자승 알고리즘을 이용한 초음파 비파괴검사 신호 분류법)

  • Kim, Dae-Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.1
    • /
    • pp.27-35
    • /
    • 2005
  • Ultrasonic inspection methods are widely used for detecting flaws in materials. The signal analysis step plays a crucial part in the data interpretation process. A number of signal processing methods have been proposed to classify ultrasonic flaw signals. One of the more popular methods involves the extraction of an appropriate set of features followed by the use of a neural network for the classification of the signals in the feature spare. This paper describes an alternative approach which uses the least mean square (LMS) method and exportation maximization (EM) algorithm with the model based deconvolution which is employed for classifying nondestructive evaluation (NDE) signals from steam generator tubes in a nuclear power plant. The signals due to cracks and deposits are not significantly different. These signals must be discriminated to prevent from happening a huge disaster such as contamination of water or explosion. A model based deconvolution has been described to facilitate comparison of classification results. The method uses the space alternating generalized expectation maximiBation (SAGE) algorithm ill conjunction with the Newton-Raphson method which uses the Hessian parameter resulting in fast convergence to estimate the time of flight and the distance between the tube wall and the ultrasonic sensor. Results using these schemes for the classification of ultrasonic signals from cracks and deposits within steam generator tubes are presented and showed a reasonable performances.

Time Domain Response of Random Electromagnetic Signals for Electromagnetic Topology Analysis Technique

  • Han, Jung-hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.135-144
    • /
    • 2022
  • Electromagnetic topology (EMT) technique is a method to analyze each component of the electromagnetic propagation environment and combine them in the form of a network in order to effectively model the complex propagation environment. In a typical commercial communication channel model, since the propagation environment is complex and difficult to predict, a probabilistic propagation channel model that utilizes an average solution, although with low accuracy, is used. However, modeling techniques using EMT technique are considered for application of propagation and coupling analysis of threat electromagnetic waves such as electromagnetic pulses, radio wave models used in electronic warfare, local communication channel models used in 5G and 6G communications that require relatively high accuracy electromagnetic wave propagation characteristics. This paper describes the effective implementation method, algorithm, and program implementation of the electromagnetic topology (EMT) method analyzed in the frequency domain. Also, a method of deriving a response in the time domain to an arbitrary applied signal source with respect to the EMT analysis result in the frequency domain will be discussed.

Development Status of Military Search and Rescue System M&S Software (군 탐색구조 시스템 M&S 소프트웨어 개발 현황)

  • Kim, Jaehyun;Lee, Sanguk;Kim, Jaehoon;Ahn, Woo-Geun
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.3
    • /
    • pp.121-126
    • /
    • 2014
  • ETRI(Electronics and Telecommunication Research Institute) has joined National GNSS Research Center program of Defense Acquisition Program Administration and Agency for Defense Development in 2010. The research subject is technology for MSAR(Military Search and Rescue) system configuration. In this project, we analyses the ways in order to improve the accuracy, reliability, availability for MSAR system from M&S(Modeling and Simulation). The MSAR System M&S Software can be used for performance analysis of new elements, such as ground elements and satellite elements without any hardware development. In this paper, after introduction of the architecture design and functional scope of the simulator, the performance analysis result for MSAR M&S software is presented.