운송 산업은 우리나라의 3면이 바다로 둘러싸여 있는 지리적 요건과 자원 소비량의 대부분을 수입에 의존하는 자원 빈곤 문제로 인해 중요한 산업 중 하나이다. 그 중에서도 해운업의 비중은 운송 산업의 대부분을 차지할 정도로 크며, 해운업에서의 유지보수는 선박의 운영 효율성 개선 및 비용 감소에 있어서도 중요하다. 그러나 현재 선박이 유지보수를 위해 일정기간 주기로 검사가 시행되고, 이에 따라 시간과 비용이 발생하며 원인규명도 제대로 되지 않고 있다. 따라서 본 연구에서는 제안 방법론인 LSTM-AutoEncoder를 활용해 실제 선박 운항 데이터에 대해 시점을 고려하여 선박 고장의 원인이 될 수 있는 이상 탐지를 수행한다. 또한 클러스터링을 통해 군집화를 수행하고 이상치에 대해 요인별로 그룹화를 통해 선박 메인엔진 고장의 잠재 원인을 규명한다. 이는 선박의 다양한 정보에 대해 보다 빠르게 모니터링이 가능하고, 이상 정도를 식별할 수 있다. 또한 현재 선박의 고장 감시시스템에 있어서도 구체화된 경보 점 설정과 고장 진단 체계를 갖추고, 유지보수시점을 찾는 데 도움을 줄 수 있을 것이다.
외부 데이터가 진료병원 Server에 저장됨에 있어서 판독을 의뢰하지 않을 경우, 대부분의 병원이 무상으로 이루어 지고 있는 상황이며 이에 외부 데이터 단순 import의 효율적인 관리를 위한 수가 적용 여부를 검토하였다. 2007년 3월부터 4월까지 서울 경기 지역의 PACS가 도입 된지 1년 이상, 병상 수 500Bed 이상의 종합 대학병원 25곳에 근무하는 각 병원의 PACS 운영실 및 PACS 관리자를 대상으로 하였다. 외부 데이터에 관한 10가지 항목의 설문지를 작성하여 각 병원의 PASC 담당자 및 관리자를 대상으로 E-mail을 이용한 자기 기입 방식, 전화를 통한 질의응답 방식으로 조사하였다. 조사된 25개의 종합 대학병원의 96%이상이 외부 데이터 단순 import를 지원하고 있었으며, 그 중 92%의 병원은 무상으로 이루어지고 있었다. 이와 같이 진행 되는 부분에 대하여 각 병원의 PACS 담당자 70% 이상이 단순 import에 대한 수가 적용의 필요성을 느끼고 있으며, 현재 많은 병원에서 단순 import의 무상 지원으로 인한 문제점을 인식하고 있었다. K병원을 기준으로 단순 import에 년간 H/W 소요 비용은 336만원이고, 년간 인건비 소요비용은 421만원이다. 또한 단순 import 한 건당 평균 데이터 size는 48MB 정도로 조사되었다. 환자 입장에서 진료에 참고자료로 사용 될 외부 데이터의 정확한 저장과 정당한 PACS 사용을 위해서는 그에 상응하는 수가가 적용 되어야 할 것이다. 보험심사평가원 급여기준에 따라 수가적용이 인정되어 의료영상 디지털화로 인한 초기의 고액 투자비용 보장과 회수를 위해 단순 Import의 수가 적용이 반드시 필요하다고 사료 된다.
최근 산업 분야 자동화의 발전에 따라 이상 징후 검출에 대한 연구가 활발하게 진행 중이다. 공장 자동화에 사용되는 이상 징후 검출의 응용분야로 카메라를 사용한 결함 검사가 있다. 비전 카메라 검사는 공장 자동화에서 높은 성능과 효율성을 보이지만, 조명과 환경조건의 불안정성을 극복하기가 어렵다. 딥러닝을 이용한 카메라 검사가 훨씬 더 높은 성능을 보이면서 비전 카메라 검사의 문제를 해결할 수 있지만 학습을 위해 엄청난 양의 정상 데이터 및 비정상 데이터를 요구하기 때문에 실제 산업 분야에 적용하기가 어렵다. 따라서 본 연구는 정상 데이터만을 사용한 72개의 기하학적 변환 딥러닝 방법으로 비정상 데이터 수집 문제를 극복하고, 성능 개선을 위한 특이치 노출 방법을 추가한 네트워크를 제안한다. 이를 자동차 부품 데이터 및 이상치 검출용 데이터베이스인 MVTec 데이터 셋에 적용하고 검증함에 의해 실제 산업 현장에서 적용할 수 있음을 보인다.
다이캐스팅 공정은 다양한 산업군의 인프라 역할을 수행하는 중요한 공정이지만, 높은 불량률로 인하여 관련 기업들의 수익성 및 생산성의 한계가 있는 상황이다. 이를 타개하기 위하여, 본 연구에서는 다이캐스팅 공정의 불량 검출을 위한 산업인공지능 기반 모듈을 구성하였다. 개발된 불량 검출 모듈은 제공되는 데이터의 특징에 따라서 3단계로 동작되는 모델로 구성된다. 1단계 모델은 비지도학습 기반 이상 검출을 진행하며, 레이블이 없는 데이터셋을 대상으로 작동한다. 2단계 모델은 반지도학습 기반으로 이상 검출을 진행하며, 양품 데이터의 레이블만 존재하는 데이터셋을 대상으로 작동하며, 3단계 모델은 소수의 불량 데이터가 제공된 상황의 지도학습 모델을 기반으로 작동한다. 개발된 모델은 실제 다이캐스팅 양품 데이터를 바탕으로 96% 이상의 우수한 양품 검출 성능을 보였다.
데이터 웨어하우스를 쉽게 생각하고 접근해서는 안된다. 유행처럼 '우리도 한번 해볼까'라고 시도한다면 성공할 확률이 희박하다. 왜 하는지, 데이터 웨어하우스를 구축했을 때 이점은 무엇인지부터 꼼꼼히 점검해볼 필요가 있다. 시기를 정해놓고 매듭짓는 프로젝트가 아닌만큼 장기적인 차원에서 접근해야 한다. 데이터 웨어하우스는 정보기술 차원이 아니라 그 이상이라는 점을 염두에 둘 필요가 있다.
오늘날 BI(Business Intelligence)시스템 다차원 데이터를 다루는 많은 방법들이 제안되어 TB 이상의 데이터를 다룰 수 있다. 하지만 IT 전문가 및 IT에 대한 투자여력이 충분하지 않은 중소 제조 기업들은 발 맞춰가기 힘들다. 또한 생산관리시스템(MES)을 미 도입한 기업이 대다수이고, 존재하는 현장데이터의 대부분도 수기데이터 또는 Excel 데이터로 보관 되어 있어, 수작업에 의한 데이터 분석과 의사결정을 수행한다. 이로 인해, 불량 요인 파악이나 이상 현상 파악이 불분명하기 때문에 데이터 분석에 어려움을 겪는다. 이에 본 연구에서는 중소제조기업의 경쟁력 강화를 위하여 제조 기업현장에서 사용되는 데이터를 자동으로 수집하여 정제 및 처리하여 저장이 가능하도록 하는 빅 데이터 분석 시스템 모델을 개발하였다. 이 분석 시스템 모델은 ERP, MIS 등에 존재하는 데이터들이 각 시스템의 DB 기능을 활용하여 데이터를 추출하고 정제하여 수집하는 ETL(Extract Transform Loading)과정을 통한다. 현장에서 비정형으로 기록되고 있는 정보들(ex. Excel)은 ODE(Office Data Excavation)모듈을 통해 문서의 패턴을 자동으로 인식하고 정형화된 정보로서 추출, 정제되어 수집된다. 저장된 데이터는 오픈소스 데이터 시각화 라이브러리인 D3.js를 이용하여 다양한 chart들을 통한 강력한 시각효과를 제공함으로써, 정보간의 연관 관계 및 다차원 분석의 기반을 마련하여 의사결정체계를 효과적으로 지원한다. 또한, 높은 가격에 형성되어 있는 빅데이터 솔루션을 대신해 오픈소스 Spago BI를 이용하여 경제적인 빅 데이터 솔루션을 제공한다. 본 연구의 기대효과로는 첫째, 현장 데이터 중심의 효과적인 의사결정 기반을 마련할 수 있다. 둘째, 통합 데이터 기반의 연관/다차원 분석으로 경영 효율성이 향상된다. 마지막으로, 중소 제조기업 환경에 적합한 분석 시스템을 구축함으로써 경쟁력과 생산력을 강화한다.
본 논문에서는 교량의 변위를 IoT 장치를 이용하여 실시간 측정하고 추출된 데이터를 이용하여 교량의 이상징후를 AI 기반으로 진단 및 모니터링 하는 방법을 제안한다. AI 모델 학습 학습을 위해서 비정상 상태의 교량이 필요하지만, 실제 교량에 인위적으로 비정상 상태를 만들 수 없으므로, 탄성 받침을 이용하여 모의 교량을 제작하였다. 탄성 받침을 이용하여 제작에 반영 및 모의교량에 적합한 모의 차량도 제작하여 정상적 데이터와 비정상적 데이터를 수집하였다. 수집된 데이터를 전처리 과정을 통해 AI 분석을 통해 교량의 이상 징후를 진단 및 모니터링하였으며, 제안 모델을 실험한 결과 96.7%의 정확도가 도출되었다.
최근 산업제어시스템을 대상으로 하는 보안 사고가 지속적으로 증가함에 따라서 이상탐지 시스템에 대한 다양한 연구가 진행되고 있다. 특히 AI 기술의 급속한 발달과 함께 수준 높은 AI기반 이상탐지시스템이 연구되고 있다. 이러한 AI 모델은 산업제어시스템 환경에서 적용할 수 있도록 실시간의 처리가 필요하며, 데이터 세트의 학습에는 산업제어시스템 특성을 고려하는 것이 요구된다. 따라서, 데이터 세트가 산업제어시스템에서 적합하게 활용될 수 있는지 판별할 수 있는 세부 기준을 마련하게 된다면, 우수한 데이터 세트의 활용을 통해 산업제어시스템을 위한 AI 모델의 성능이 향상될 것으로 보인다. 본 논문에서는 산업제어시스템의 AI 침입 탐지시스템의 성능 향상을 위한 데이터 품질 연구의 동향을 조사하고, 향후 발전을 위한 방향성을 구체적인 평가항목을 통해 제시하고자 한다.
자동차의 고장은 그 종류나 특징면에서 다양하게 나타나게 되므로 자동차의 진단과 점검에는 많은 노동력과 비용, 시간이 소요되며 운전자에 의한 정보를 기대하기 힘든 경우에는 진단이나 정비과정에 많은 어려움을 겪게 된다. 따라서 본 연구에서는 운전자에 의한 일반적인 정보와 진동 소음센서에 의한 정보의 신호처리기술을 종합하여 자동차 부품의 이상 신호 분석을 하였다. 그리고 정상 상태 대비 이상 신호에 따른 진동 소음 데이터 변화율을 계산하여 작동 모드 별 실내음압에 영향을 미치는 신호 및 해당 주파수 특성을 분석하였다. 이에 따라 자동차 정비 전문가 시스템 구축을 위한 기초 연구로 엔진부의 이상 신호와 각 부품 별 이상 신호로 나누어 분석하여 데이터 처리 과정 및 이상 증상 별 경향 파악에 본 연구의 목적을 둔다.
자동차의 고장은 그 종류나 특징 면에서 다양하게 나타나게 되므로 자동차의 진단과 점검에는 많은 노력과 비용, 시간이 소요되며 운전자에 의한 정보를 기대하기 힘든 경우에는 진단이나 정비과정에 많은 어려움을 겪게 된다. 따라서 본 연구에서는 운전자에 의한 일반적인 정보와 진동 소음 센서에 의한 정보의 신호처리기술을 종합하여 자동차 부품의 이상 신호 분석을 하였다. 그리고 정상 상태 대비 이상 신호에 따른 진동 소음 데이터 변화율을 계산하여 작동 모드 별 실내 음압에 영향을 미치는 신호 및 해당 주파수 특성을 분석하였다. 이에 따라 자동차 정비 전문가 시스템 구축을 위한 기초 연구로 엔진부의 이상 신호와 각 부품 별 이상 신호로 나누어 분석하여 데이터 처리 과정 및 이상 증상 별 경향 파악에 본 연구의 목적을 둔다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.