• 제목/요약/키워드: 이상데이터

검색결과 6,548건 처리시간 0.037초

LSTM-AutoEncoder를 활용한 선박 메인엔진의 이상 탐지 및 라벨링 (Outlier Detection and Labeling of Ship Main Engine using LSTM-AutoEncoder)

  • 김도희;한영재;김혜미;강성필;김기훈;배혜림
    • 한국빅데이터학회지
    • /
    • 제7권1호
    • /
    • pp.125-137
    • /
    • 2022
  • 운송 산업은 우리나라의 3면이 바다로 둘러싸여 있는 지리적 요건과 자원 소비량의 대부분을 수입에 의존하는 자원 빈곤 문제로 인해 중요한 산업 중 하나이다. 그 중에서도 해운업의 비중은 운송 산업의 대부분을 차지할 정도로 크며, 해운업에서의 유지보수는 선박의 운영 효율성 개선 및 비용 감소에 있어서도 중요하다. 그러나 현재 선박이 유지보수를 위해 일정기간 주기로 검사가 시행되고, 이에 따라 시간과 비용이 발생하며 원인규명도 제대로 되지 않고 있다. 따라서 본 연구에서는 제안 방법론인 LSTM-AutoEncoder를 활용해 실제 선박 운항 데이터에 대해 시점을 고려하여 선박 고장의 원인이 될 수 있는 이상 탐지를 수행한다. 또한 클러스터링을 통해 군집화를 수행하고 이상치에 대해 요인별로 그룹화를 통해 선박 메인엔진 고장의 잠재 원인을 규명한다. 이는 선박의 다양한 정보에 대해 보다 빠르게 모니터링이 가능하고, 이상 정도를 식별할 수 있다. 또한 현재 선박의 고장 감시시스템에 있어서도 구체화된 경보 점 설정과 고장 진단 체계를 갖추고, 유지보수시점을 찾는 데 도움을 줄 수 있을 것이다.

외부 병원 Data의 효율적 관리에 대한 제언 (The proposal about the effective management of outside data)

  • 이화선;이래곤;강지연;황선광
    • 대한디지털의료영상학회논문지
    • /
    • 제9권1호
    • /
    • pp.31-35
    • /
    • 2007
  • 외부 데이터가 진료병원 Server에 저장됨에 있어서 판독을 의뢰하지 않을 경우, 대부분의 병원이 무상으로 이루어 지고 있는 상황이며 이에 외부 데이터 단순 import의 효율적인 관리를 위한 수가 적용 여부를 검토하였다. 2007년 3월부터 4월까지 서울 경기 지역의 PACS가 도입 된지 1년 이상, 병상 수 500Bed 이상의 종합 대학병원 25곳에 근무하는 각 병원의 PACS 운영실 및 PACS 관리자를 대상으로 하였다. 외부 데이터에 관한 10가지 항목의 설문지를 작성하여 각 병원의 PASC 담당자 및 관리자를 대상으로 E-mail을 이용한 자기 기입 방식, 전화를 통한 질의응답 방식으로 조사하였다. 조사된 25개의 종합 대학병원의 96%이상이 외부 데이터 단순 import를 지원하고 있었으며, 그 중 92%의 병원은 무상으로 이루어지고 있었다. 이와 같이 진행 되는 부분에 대하여 각 병원의 PACS 담당자 70% 이상이 단순 import에 대한 수가 적용의 필요성을 느끼고 있으며, 현재 많은 병원에서 단순 import의 무상 지원으로 인한 문제점을 인식하고 있었다. K병원을 기준으로 단순 import에 년간 H/W 소요 비용은 336만원이고, 년간 인건비 소요비용은 421만원이다. 또한 단순 import 한 건당 평균 데이터 size는 48MB 정도로 조사되었다. 환자 입장에서 진료에 참고자료로 사용 될 외부 데이터의 정확한 저장과 정당한 PACS 사용을 위해서는 그에 상응하는 수가가 적용 되어야 할 것이다. 보험심사평가원 급여기준에 따라 수가적용이 인정되어 의료영상 디지털화로 인한 초기의 고액 투자비용 보장과 회수를 위해 단순 Import의 수가 적용이 반드시 필요하다고 사료 된다.

  • PDF

정상 샘플 이미지의 기하학적 변환을 사용한 이상 징후 검출 (Anomaly Detection using Geometric Transformation of Normal Sample Images)

  • 권용완;강동중
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권4호
    • /
    • pp.157-163
    • /
    • 2022
  • 최근 산업 분야 자동화의 발전에 따라 이상 징후 검출에 대한 연구가 활발하게 진행 중이다. 공장 자동화에 사용되는 이상 징후 검출의 응용분야로 카메라를 사용한 결함 검사가 있다. 비전 카메라 검사는 공장 자동화에서 높은 성능과 효율성을 보이지만, 조명과 환경조건의 불안정성을 극복하기가 어렵다. 딥러닝을 이용한 카메라 검사가 훨씬 더 높은 성능을 보이면서 비전 카메라 검사의 문제를 해결할 수 있지만 학습을 위해 엄청난 양의 정상 데이터 및 비정상 데이터를 요구하기 때문에 실제 산업 분야에 적용하기가 어렵다. 따라서 본 연구는 정상 데이터만을 사용한 72개의 기하학적 변환 딥러닝 방법으로 비정상 데이터 수집 문제를 극복하고, 성능 개선을 위한 특이치 노출 방법을 추가한 네트워크를 제안한다. 이를 자동차 부품 데이터 및 이상치 검출용 데이터베이스인 MVTec 데이터 셋에 적용하고 검증함에 의해 실제 산업 현장에서 적용할 수 있음을 보인다.

다단계 딥러닝 기반 다이캐스팅 공정 불량 검출 (Fault Detection in Diecasting Process Based on Deep-Learning)

  • 이정수;최영심
    • 한국주조공학회지
    • /
    • 제42권6호
    • /
    • pp.369-376
    • /
    • 2022
  • 다이캐스팅 공정은 다양한 산업군의 인프라 역할을 수행하는 중요한 공정이지만, 높은 불량률로 인하여 관련 기업들의 수익성 및 생산성의 한계가 있는 상황이다. 이를 타개하기 위하여, 본 연구에서는 다이캐스팅 공정의 불량 검출을 위한 산업인공지능 기반 모듈을 구성하였다. 개발된 불량 검출 모듈은 제공되는 데이터의 특징에 따라서 3단계로 동작되는 모델로 구성된다. 1단계 모델은 비지도학습 기반 이상 검출을 진행하며, 레이블이 없는 데이터셋을 대상으로 작동한다. 2단계 모델은 반지도학습 기반으로 이상 검출을 진행하며, 양품 데이터의 레이블만 존재하는 데이터셋을 대상으로 작동하며, 3단계 모델은 소수의 불량 데이터가 제공된 상황의 지도학습 모델을 기반으로 작동한다. 개발된 모델은 실제 다이캐스팅 양품 데이터를 바탕으로 96% 이상의 우수한 양품 검출 성능을 보였다.

데이터 웨어하우스 구축, 성공하려면 ?

  • 신동원
    • 디지털콘텐츠
    • /
    • 6호통권49호
    • /
    • pp.9-16
    • /
    • 1997
  • 데이터 웨어하우스를 쉽게 생각하고 접근해서는 안된다. 유행처럼 '우리도 한번 해볼까'라고 시도한다면 성공할 확률이 희박하다. 왜 하는지, 데이터 웨어하우스를 구축했을 때 이점은 무엇인지부터 꼼꼼히 점검해볼 필요가 있다. 시기를 정해놓고 매듭짓는 프로젝트가 아닌만큼 장기적인 차원에서 접근해야 한다. 데이터 웨어하우스는 정보기술 차원이 아니라 그 이상이라는 점을 염두에 둘 필요가 있다.

  • PDF

제조기업 현장 데이터를 이용한 빅데이터 분석시스템 모델

  • 김재중;성백민;유재곤;강찬우;김종배
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 춘계학술대회
    • /
    • pp.741-743
    • /
    • 2015
  • 오늘날 BI(Business Intelligence)시스템 다차원 데이터를 다루는 많은 방법들이 제안되어 TB 이상의 데이터를 다룰 수 있다. 하지만 IT 전문가 및 IT에 대한 투자여력이 충분하지 않은 중소 제조 기업들은 발 맞춰가기 힘들다. 또한 생산관리시스템(MES)을 미 도입한 기업이 대다수이고, 존재하는 현장데이터의 대부분도 수기데이터 또는 Excel 데이터로 보관 되어 있어, 수작업에 의한 데이터 분석과 의사결정을 수행한다. 이로 인해, 불량 요인 파악이나 이상 현상 파악이 불분명하기 때문에 데이터 분석에 어려움을 겪는다. 이에 본 연구에서는 중소제조기업의 경쟁력 강화를 위하여 제조 기업현장에서 사용되는 데이터를 자동으로 수집하여 정제 및 처리하여 저장이 가능하도록 하는 빅 데이터 분석 시스템 모델을 개발하였다. 이 분석 시스템 모델은 ERP, MIS 등에 존재하는 데이터들이 각 시스템의 DB 기능을 활용하여 데이터를 추출하고 정제하여 수집하는 ETL(Extract Transform Loading)과정을 통한다. 현장에서 비정형으로 기록되고 있는 정보들(ex. Excel)은 ODE(Office Data Excavation)모듈을 통해 문서의 패턴을 자동으로 인식하고 정형화된 정보로서 추출, 정제되어 수집된다. 저장된 데이터는 오픈소스 데이터 시각화 라이브러리인 D3.js를 이용하여 다양한 chart들을 통한 강력한 시각효과를 제공함으로써, 정보간의 연관 관계 및 다차원 분석의 기반을 마련하여 의사결정체계를 효과적으로 지원한다. 또한, 높은 가격에 형성되어 있는 빅데이터 솔루션을 대신해 오픈소스 Spago BI를 이용하여 경제적인 빅 데이터 솔루션을 제공한다. 본 연구의 기대효과로는 첫째, 현장 데이터 중심의 효과적인 의사결정 기반을 마련할 수 있다. 둘째, 통합 데이터 기반의 연관/다차원 분석으로 경영 효율성이 향상된다. 마지막으로, 중소 제조기업 환경에 적합한 분석 시스템을 구축함으로써 경쟁력과 생산력을 강화한다.

  • PDF

AI 기반의 교량 안전 모니터링 시스템 모델 (AI-based Bridge Safety Monitoring System Model)

  • 안영휘;함형민;박종수;김동현
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
    • /
    • pp.107-108
    • /
    • 2023
  • 본 논문에서는 교량의 변위를 IoT 장치를 이용하여 실시간 측정하고 추출된 데이터를 이용하여 교량의 이상징후를 AI 기반으로 진단 및 모니터링 하는 방법을 제안한다. AI 모델 학습 학습을 위해서 비정상 상태의 교량이 필요하지만, 실제 교량에 인위적으로 비정상 상태를 만들 수 없으므로, 탄성 받침을 이용하여 모의 교량을 제작하였다. 탄성 받침을 이용하여 제작에 반영 및 모의교량에 적합한 모의 차량도 제작하여 정상적 데이터와 비정상적 데이터를 수집하였다. 수집된 데이터를 전처리 과정을 통해 AI 분석을 통해 교량의 이상 징후를 진단 및 모니터링하였으며, 제안 모델을 실험한 결과 96.7%의 정확도가 도출되었다.

  • PDF

산업제어시스템에서의 AI IDS 성능 향상을 위한 데이터 품질 연구 동향 및 제언

  • 권남혁;김유신;우은규;정다훈;채척;신동훈
    • 정보보호학회지
    • /
    • 제33권6호
    • /
    • pp.5-14
    • /
    • 2023
  • 최근 산업제어시스템을 대상으로 하는 보안 사고가 지속적으로 증가함에 따라서 이상탐지 시스템에 대한 다양한 연구가 진행되고 있다. 특히 AI 기술의 급속한 발달과 함께 수준 높은 AI기반 이상탐지시스템이 연구되고 있다. 이러한 AI 모델은 산업제어시스템 환경에서 적용할 수 있도록 실시간의 처리가 필요하며, 데이터 세트의 학습에는 산업제어시스템 특성을 고려하는 것이 요구된다. 따라서, 데이터 세트가 산업제어시스템에서 적합하게 활용될 수 있는지 판별할 수 있는 세부 기준을 마련하게 된다면, 우수한 데이터 세트의 활용을 통해 산업제어시스템을 위한 AI 모델의 성능이 향상될 것으로 보인다. 본 논문에서는 산업제어시스템의 AI 침입 탐지시스템의 성능 향상을 위한 데이터 품질 연구의 동향을 조사하고, 향후 발전을 위한 방향성을 구체적인 평가항목을 통해 제시하고자 한다.

실험적 방법을 이용한 자동차 부품의 고장신호 분석, Part 1 - 엔진의 이상 신호 분석 위주 (Fault Signal Analysis of the Automotive Components using Experimental Method, Part 1 - Consideration of the Engine Signals)

  • 박상길;박원식;이해진;홍우경;오재응
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.238-242
    • /
    • 2007
  • 자동차의 고장은 그 종류나 특징면에서 다양하게 나타나게 되므로 자동차의 진단과 점검에는 많은 노동력과 비용, 시간이 소요되며 운전자에 의한 정보를 기대하기 힘든 경우에는 진단이나 정비과정에 많은 어려움을 겪게 된다. 따라서 본 연구에서는 운전자에 의한 일반적인 정보와 진동 소음센서에 의한 정보의 신호처리기술을 종합하여 자동차 부품의 이상 신호 분석을 하였다. 그리고 정상 상태 대비 이상 신호에 따른 진동 소음 데이터 변화율을 계산하여 작동 모드 별 실내음압에 영향을 미치는 신호 및 해당 주파수 특성을 분석하였다. 이에 따라 자동차 정비 전문가 시스템 구축을 위한 기초 연구로 엔진부의 이상 신호와 각 부품 별 이상 신호로 나누어 분석하여 데이터 처리 과정 및 이상 증상 별 경향 파악에 본 연구의 목적을 둔다.

  • PDF

실험적 방법을 이용한 자동차 부품의 고장신호 분석, Part 2. 부품별 이상 신호 분석 (Fault Signal Analysis of the Automotive Components using Experimental Method, Part 2 - Consideration of the Component Signals)

  • 이해진;박원식;이유엽;오재응
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.243-246
    • /
    • 2007
  • 자동차의 고장은 그 종류나 특징 면에서 다양하게 나타나게 되므로 자동차의 진단과 점검에는 많은 노력과 비용, 시간이 소요되며 운전자에 의한 정보를 기대하기 힘든 경우에는 진단이나 정비과정에 많은 어려움을 겪게 된다. 따라서 본 연구에서는 운전자에 의한 일반적인 정보와 진동 소음 센서에 의한 정보의 신호처리기술을 종합하여 자동차 부품의 이상 신호 분석을 하였다. 그리고 정상 상태 대비 이상 신호에 따른 진동 소음 데이터 변화율을 계산하여 작동 모드 별 실내 음압에 영향을 미치는 신호 및 해당 주파수 특성을 분석하였다. 이에 따라 자동차 정비 전문가 시스템 구축을 위한 기초 연구로 엔진부의 이상 신호와 각 부품 별 이상 신호로 나누어 분석하여 데이터 처리 과정 및 이상 증상 별 경향 파악에 본 연구의 목적을 둔다.

  • PDF