• Title/Summary/Keyword: 이산화탄소 저장

Search Result 451, Processing Time 0.032 seconds

Evaluation on the Basic Properties of Phosphate Modified Portland Cement Paste for Potential Application of Geologic CO2 Sequestration (이산화탄소 지중 격리용 인산염 혼입 시멘트 페이스트에 관한 기초물성 평가)

  • Yoon, Ju-Han;Kim, Seong-Geun;Kim, Ji-Hyun;Lee, Jae-Yong;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.3
    • /
    • pp.253-260
    • /
    • 2017
  • As global warming became a worldwide issue, a significant effort has been made on the development of technology related to $CO_2$ capture and storage. Geologic sequestration of $CO_2$ is one of those technologies for safe disposal of $CO_2$. Geologic sequestration stores $CO_2$ in the form of supercritical fluid into the underground site surrounded by solid rock, and concrete is used for prevention of $CO_2$ leakage into the atmosphere. In such case, concrete may experience severe damage by attack of supercritical $CO_2$, and especially in contact with underground water, very aggressive form of carbonation can occur. In this work, to prevent such deterioration in concrete, calcium phosphates were added to the portland cement to produce hydroxyapatite, one of the most stable mineral in the world. Temperature rise, viscosity, set and stiffening, and strength development of cement paste incorporating three different types of calcium phosphates were investigated. According to the results, it was found that the addition of calcium phosphate increased apparent viscosity, but decreased maximum temperature rise and 28 day compressive strength. It was found that monocalcium phosphate was found to be inappropriate for portland cement based material. Applicability of dicalcium and tricalcium phosphates for portland cement needs to be evaluated with further investigation, including the long term compressive strength development.

Reservoir Modeling for Carbon Dioxide Sequestration and Enhanced Oil Recovery (이산화탄소 지중저장과 원유 회수증진 공정을 위한 저류층 모델링)

  • Kim, Seung-Hyok;Lee, Jong-Min;Yoon, En-Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.3
    • /
    • pp.35-41
    • /
    • 2012
  • Manifold researches for carbon capture and storage (CCS) have been developed and large scale-carbon capture system can be performed recently. Hence, the technologies for $CO_2$ sequestration or storage become necessary to handle the captured $CO_2$. Among them, enhanced oil recovery using $CO_2$ can be a solution since it guarantees both oil recovery and $CO_2$ sequestration. In this study, the miscible flow of oil and $CO_2$ in porous media is modeled to analyze the effect of enhanced oil recovery and $CO_2$ sequestration. Based on Darcy-Muskat law, the equation is modified to consider miscibility of oil and $CO_2$ and the change of viscosity. Finite volume method is used for numerical modeling. As results, the pressure and oil saturation changes with time can be predicted when oil, water, and $CO_2$ are injected, respectively, and $CO_2$ injection is more efficient than water injection for oil recovery.

Effects of Gas-absorbent on the Storage of Kimchi (김치 저장성에 미치는 가스 흡수제의 영향)

  • 윤경영;강미정;신승렬;윤광섭;김순동;김광수
    • Food Science and Preservation
    • /
    • v.5 no.4
    • /
    • pp.363-367
    • /
    • 1998
  • Kimchi attached gas-absorbent and unattached one were stored at 20$^{\circ}C$, examined for the storage effects by measuring changes of pH, acidity, CO$_2$ contents, total microbe and lactic acid bacteria. pH of kimchi attached KOH is higher than that of the others during storage. Acidity of kimchi attached KOH is lower than that of the others during storage. The CO$_2$ contents of kimchi used KOH as Bas-absorbent is 1.5 mg% at 6 days, after it's value is constant during storage. And the CO$_2$ content of kimchi attached gas-absorbent is lower than that of kimchi unattached gas-absorbent. Total microbe number of kimchi unattached gas-absorbent, treated Ca(OH)$_2$ and treated KOH are the highest value at 6, 6 and 8 days, respectively. Lactic acid bacteria number of kimchi is increased during storage and that of kimchi attached gas-absorbent is higher than that of kimchi unattached gas-absorbent.

  • PDF

Gas Absorption Potential of Oak Charcoal and Modelling for Practical Application (참숯의 가스 흡착능 분석 실험과 실용화 모델링)

  • Park, Youn-Moon;Ha, Hyun-Tae
    • Horticultural Science & Technology
    • /
    • v.19 no.2
    • /
    • pp.174-178
    • /
    • 2001
  • Absorption potential of oak charcoal was estimated using simulated static and dynamic systems to establish a model for practical application of the charcoal in modified atmosphere (MA) packaging and during the storage of 'Fuji' apples. Practical MA packaging was performed using $60{\mu}m$ PE film zipper bags in which five apples were placed. Absorption potential of oak charcoal was $58.4{\mu}L/100g$ charcoal for ethylene and 583 mg/100 g charcoal for carbon dioxide. Effects of enclosing a 100 g-charcoal packet inside a MA package seemed not to last long enough for quality maintenance of 'Fuji' apples stored at $0^{\circ}C$ for three months. During extended storage, ethylene and $CO_2$ levels were not significantly reduced by charcoal treatment. Nevertheless, absorption of carbon dioxide appeared to alleviate the incidence of $CO_2$-related internal browning disorder. Modelling study of practical storage and marketing procedure indicates that 0.19 kg charcoal/day is required to offset $CO_2$ production from 15 kg of apples at $0^{\circ}C$. The amount of charcoal should be increased to 3.10 kg/day if ethylene is a target gas. From the practical point of view, the results suggest that charcoal could be used only for small unit packages for a short period.

  • PDF

Changes in The Chemical Composition of Apple Slices Pretreated with Supercritical Carbon Dioxide (건조 전처리 방법으로써 초임계 이산화탄소가 사과절편의 화학적 성분에 미치는 영향)

  • Lee, Bo-Su;Lee, Won-Young
    • Food Science and Preservation
    • /
    • v.17 no.2
    • /
    • pp.256-260
    • /
    • 2010
  • We investigated changes in the chemical composition of apple slices after pretreatment with supercritical $CO_2$. Total phenolic levels increased with increasing temperature, although the concentrations were lower in pretreated material than in fresh or untreated slices. The levels of vitamin C and malic acid in pretreated slices were also lower than in untreated or fresh apple slices. Little difference was evident among various pretreatmentconditions. It was found that supercritical $CO_2$ served not as a solvent but rather as a means of tissue compression. Supercritical $CO_2$ compressed the apple slices, causing juice to be extruded. The juice disappeared when the supercritical $CO_2$ pressure was released.

Trends of Underground $CO_2$ Storage Technology for the Large Scale Reduction of GHG (온실가스 대량감축을 위한 $CO_2$ 지중저장의 기술 동향)

  • Chae, Kwagn-Seok;Lee, Sang-Pil;Yoon, Sung-Wook;Matsuoka, Toshifumi
    • Tunnel and Underground Space
    • /
    • v.20 no.5
    • /
    • pp.309-317
    • /
    • 2010
  • CCS (Carbon dioxide Capture and Storage) is a means of mitigating the contribution of $CO_2$ to the Greenhouse gas, from large point sources such as power plants and steel companies. CCS is a process whereby $CO_2$ is captured from gases produced by fossil fuel combustion, compressed, transported and injected into deep geologic formations for permanent storage. CCS applied to a conventional power plant can reduce $CO_2$ emissions to the atmosphere by approximately 80~90% compared to a plant without CCS. The IPCC estimates that the economic potential of CCS will be between 10% and 55% of the total carbon mitigation effort by year 2100. In this paper, overseas sites where CCS technology is being applied and technical development trends for CCS are briefly reviewed.

Consideration of Carbon dioxide Capture and Geological Storage (CCS) as Clean Development Mechanism (CDM) Project Activities: Key Issues Related with Geological Storage and Response Strategies (이산화탄소 포집 및 지중저장(CCS) 기술의 청정개발체제(CDM)로의 수용 여부에 대한 정책적 고찰: 지중저장과 관련된 이슈 및 대응방안)

  • Huh, Cheol;Kang, Seong-Gil;Ju, Hyun-Hee
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.1
    • /
    • pp.51-64
    • /
    • 2011
  • Carbon dioxide Capture and Storage (CCS) is one of the key players in greenhouse gas (GHG) reduction portfolio for mitigating climate change. CCS makes simultaneously it possible not only to reduce a huge amount of carbon dioxide directly from the emission sources (e.g., coal power plant) but also to maintain the carbon concentrated-energy and/or industry infrastructure. Internationally, the United Nations Framework Convention on Climate Change (UNFCCC) is dealing the agenda for considering the possibility of including CCS project as one of Clean Development Mechanism (CDM) projects. Despite its usefulness, however, there are the controversies in including CCS as the CDM project, whose issues include i) non-permanence, including long-term permanence, ii) measuring, reporting and verification (MRV), iii) environmental impacts, iv) project activity boundaries, v) international law, vi) liability, vii) the potential for perverse outcomes, viii) safety, and ix) insurance coverage and compensation for damages caused due to seepage or leakage. In this paper, those issues in considering CCS as CDM are summarized and analyzed in order to suggest some considerations to policy makers in realizing the CCS project in Korea in the future.

Effect of Short-term High $CO_2$ on Growth of Botrytis cinerea (고농도 이산화탄소의 단기 처리가 Botrytis cinerea 생장에 미치는 영향)

  • 최정희;정문철;임정호
    • Food Science and Preservation
    • /
    • v.11 no.2
    • /
    • pp.246-249
    • /
    • 2004
  • This study was conducted to evaluate the inhibition efficacy of high CO$_2$ atmosphere (35, 60, and 100% ${\times}$ 24, 48, and 72 h) on growth of Botrytis cinerea in vitro in order to offer sterilizing method of horticultural crops including peach fruits. Botrytis cinerea was isolated from a naturally infected peach fruits. Growth of the fungus at 25$^{\circ}C$ declined with increased CO$_2$ concentration and treatment duration. Especially, 100% CO$_2$ provided completely inhibition effect of growth of the fungus for 72 h. After removal of high CO$_2$ condition, however, the fungus showed normal growth speed. The growth of fungus at low temperature was completely inhibited temporarily by short-term 100% CO$_2$ treatment, but resumed right after transferring to normal atmosphere at 25$^{\circ}C$.

Effect of Packaging Material on Quality of Kimchi During Storage (포장재질이 김치의 품질변화에 미치는 영향)

  • Kim, Yun-Ji;Hong, Seok-In;Park, Noh-Hyun;Chung, Tae-Yon
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.62-67
    • /
    • 1994
  • Quality change of Kimchi packaged with Ny/PE, Ny/CPP (PPtray+Ny/CPP cover), Cryovac BK-1, BK-4, and PET/Al/PE film was observed during storage at $5^{\circ}C$ (97%RH) and $20^{\circ}C$ (76%RH). To evaluate quality change of Kimchi, gas composition of package, pH, acidity, color, growth of lactic acid bacteria, and sensory score were measured periodically. Regarding to gas composition of package, Kimchi packaged with PET/Al/PE showed higher oxygen concentration at the beginning of storage than the others; carbon dioxide concentration was almost 100% at the end of storage. Carbon dioxide concentration of Kimchi packaged with Cryovac BK-1 and BK-4 which has higher gas permeability than the others, was increased to a maximum and then decreased due to permeation of gas during storage; oxygen concentration was increased. Unlike Kimchi packaged with Ny/PE, Ny/CPP, and PET/Al/PE, package swelling was not observed in Kimchi packaged with Cryovac BK-1 and BK-4 during storage. Although pH change was not significant depending on the packaging material, Kimchi packaged with Cryovac BK-1 and BK-4 showed lower pH value and higher acidity than those of the others. Color change of Kimchi was different depending on the packaging material during storage. Difference of the growth of lactic acid bacteria and sensory evaluation were not significant among Kimchi packaged with different packaging material during storage at either temperature. In conclusion, the effect of packaging materials on the quality change of Kimchi was not significant; however, to prevent from swelling of packaged Kimchi which is one of the most serious problem during storage and distribution, might be avoided by using relatively high $CO_2$ permeable film than high gas barrier film.

  • PDF

MA Strotage Response of Fresh Lemongrass Depending upon Film Source and Storage Temperature (필름종류와 저장온도에 따른 Lemongrass의 MA 저장성 비교)

  • Park, Kuen-Woo;Kang, Ho-Min;Kim, Chung-Ho
    • Horticultural Science & Technology
    • /
    • v.18 no.1
    • /
    • pp.18-21
    • /
    • 2000
  • This study was carried out to investigate the MA response of fresh lemongrass (Cymbopogon citratus) depending upon film sources and storage temperatures. The fresh weight loss was significantly lower at 5 and $0^{\circ}C$ than those of higher temperatures. And ceramic $80{\mu}m$ film (CE 80) was more effective in preventing weight loss than CE40. The contents of $CO_2$ and ethylene were much higher in CE 80 wrapping than those in CE 40 ones. Rapid accumulation of $CO_2$ was observed at high storage temperature. However, the ethylene content during whole storage period was higher at $0^{\circ}C$ than those at $5^{\circ}C$, but the level of ethylene was remained below 1ppm and did not adversely affected to lemongrass quality. The treatment of CE 80 at $5^{\circ}C$ was most effective on keeping visual quality and chlorophyll content. The storage durations were up to 48 days at $5^{\circ}C$ and 35 days at $0^{\circ}C$, respectively. Results indicated that CE 80 at $5^{\circ}C$ is an optimal condition for MA storage of lemongrass.

  • PDF